Background: The global resurgence of tuberculosis (TB) and the development of drug resistance, as multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis isolates, are a threat to TB control and have created a need for new and more effective anti-TB drugs.
Aim: The current study evaluated the in vitro cytotoxicity and activity of Tetradenia riparia essential oil (TrEO) and 6,7-dehydroroyleanone pure compound against M. tuberculosis HRv and susceptible and resistant clinical isolates.
Methods: The in vitro activities of TrEO and 6,7-dehydroroyleanone were determined by Resazurin Microtiter Assay Plate (REMA). The cytotoxicity was evaluated in murine peritoneal macrophages by Alamar Blue assay. The cytotoxic effects were expressed as median concentration cytotoxicity (CC) and the selectivity index (SI) was calculated.
Results: TrEO and 6,7-dehydroroyleanone showed activity against M. tuberculosis HRv with minimum inhibitory concentration (MIC) 62.5 µg/ml and 31.2 µg/ml, respectively. Both of them exhibited activities against resistant and susceptible M. tuberculosis clinical isolates with MIC values between 31.2 and 62.5 µg/ml. Cytotoxicity assays showed SI 1.9 and 7.9 for TrEO and 6,7-dehydroroyleanone, respectively.
Conclusion: These results revealed that TrEO isolated from leaves of T. riparia and the pure compound 6,7-dehydroroyleanone display good activity against M. tuberculosis clinical isolates, including MDR isolates, with low cytotoxicity to murine macrophages. The 6,7-dehydroroyleanone compound is a potential candidate for anti-TB drug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2018.04.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!