Glioblastoma (GBM) is the most aggressive type of primary brain tumours. Anti-angiogenic therapies (AAT), such as bevacizumab, have been developed to target the tumour blood supply. However, GBM presents mechanisms of escape from AAT activity, including a speculated direct effect of AAT on GBM cells. Furthermore, bevacizumab can alter the intercellular communication of GBM cells with their direct microenvironment. Extracellular vesicles (EVs) have been recently described as main acts in the GBM microenvironment, allowing tumour and stromal cells to exchange genetic and proteomic material. Herein, we examined and described the alterations in the EVs produced by GBM cells following bevacizumab treatment. Interestingly, bevacizumab that is able to neutralise GBM cells-derived VEGF-A, was found to be directly captured by GBM cells and eventually sorted at the surface of the respective EVs. We also identified early endosomes as potential pathways involved in the bevacizumab internalisation by GBM cells. Via MS analysis, we observed that treatment with bevacizumab induces changes in the EVs proteomic content, which are associated with tumour progression and therapeutic resistance. Accordingly, inhibition of EVs production by GBM cells improved the anti-tumour effect of bevacizumab. Together, this data suggests of a potential new mechanism of GBM escape from bevacizumab activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117885PMC
http://dx.doi.org/10.1186/s12943-018-0878-xDOI Listing

Publication Analysis

Top Keywords

gbm cells
24
gbm
11
extracellular vesicles
8
bevacizumab
8
cells bevacizumab
8
cells
7
evs
5
shedding bevacizumab
4
tumour
4
bevacizumab tumour
4

Similar Publications

Hierarchically Engineered Self-Adaptive Nanoplatform Guided Intuitive and Precision Interventions for Deep-Seated Glioblastoma.

ACS Nano

January 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Glioblastoma multiforme (GBM), particularly the deep-seated tumor where surgical removal is not feasible, poses great challenges for clinical treatments due to complicated biological barriers and the risk of damaging healthy brain tissue. Here, we hierarchically engineer a self-adaptive nanoplatform (SAN) that overcomes delivery barriers by dynamically adjusting its structure, surface charge, particle size, and targeting moieties to precisely distinguish between tumor and parenchyma cells. We further devise a AN-uided ntuitive and recision ntervention (SGIPi) strategy which obviates the need for sophisticated facilities, skilled operations, and real-time magnetic resonance imaging (MRI) guidance required by current MRI-guided laser or ultrasound interventions.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Despite the favorable effects of immunotherapies in multiple types of cancers, its complete success in CNS malignancies remains challenging. Recently, a successful clinical trial of cytokine-induced killer (CIK) cell immunotherapy in patients with glioblastoma (GBM) has opened a new avenue for adoptive cellular immunotherapies in CNS malignancies. Prompt from these findings, herein, we investigated whether dendritic cells (DC) in combination with cytokine-induced killer cells (DC-CIK) could also provide an alternative and more effective way to improve the efficacy of GBM treatment.

View Article and Find Full Text PDF

Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma.

Cell Rep

January 2025

The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA. Electronic address:

The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls.

View Article and Find Full Text PDF

pH-Responsive Polyethylene Glycol Engagers for Enhanced Brain Delivery of PEGylated Nanomedicine to Treat Glioblastoma.

ACS Nano

January 2025

Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engager) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!