Restriction Modification (RM) systems prevent the invasion of foreign genetic material into bacterial cells by restriction and protect the host's genetic material by methylation. They are therefore important in maintaining the integrity of the host genome. RM systems are currently classified into four types (I to IV) on the basis of differences in composition, target recognition, cofactors and the manner in which they cleave DNA. Comparing the structures of the different types, similarities can be observed suggesting an evolutionary link between these different types. This work describes the 'deconstruction' of a large Type I RM enzyme into forms structurally similar to smaller Type II RM enzymes in an effort to elucidate the pathway taken by Nature to form these different RM enzymes. Based upon the ability to engineer new enzymes from the Type I 'scaffold', an evolutionary pathway and the evolutionary pressures required to move along the pathway from Type I RM systems to Type II RM systems are proposed. Experiments to test the evolutionary model are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158711 | PMC |
http://dx.doi.org/10.1093/nar/gky760 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!