High susceptibility of mouse newborns to delayed appearance of DNA double-strand breaks in neural stem/progenitor cells exposed to ionizing radiation.

J Radiat Res

Laboratory of Radiation Biology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan.

Published: November 2018

Fetal brains are known to be extremely sensitive to ionizing radiation, which can induce structural and functional defects in the developing brain. However, there is less data on the effects of radiation on newborn brains. To determine the radiation sensitivity in newborn brains, we determined the number of DNA double-strand breaks (DSBs) appearing at later stage post-irradiation in neural stem/progenitor cells (NSPCs) of mouse newborns <3 days old, and compared it with the numbers of DSBs of fetal, 1-week-neonate, 2-week-neonate, and adult mice. DSBs in the nucleus were quantified by counting the number of foci of phosphorylated histone H2AX (γ-H2AX) in NPSCs using a newly developed computer program. Then, we irradiated 14-day fetuses, newborns <3 days old, 1-week-old neonates, 2-week-old neonates, and 12-week-old adult mice with 2 Gy of X-rays. At 6-7 weeks post-irradiation, the brain tissues isolated from the mice were incubated, and DSBs in the growing neurospheres were counted using a focus-counting program. The delayed appearance of DSBs by X-irradiation was evident in NSPCs derived from newborns <3 days old, as well as in 1-week-old neonates, 2-week-old neonates and adult mice, but not 14-day fetuses, at 6-7 weeks post-irradiation. It was of particular interest that the NSPCs of newborns were 2.5-fold more susceptible than those of adults to radiation-induced delayed appearance of DSBs, indicating that newborns <3 days old are the most vulnerable to the delayed effects of radiation among the mouse groups examined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251430PMC
http://dx.doi.org/10.1093/jrr/rry069DOI Listing

Publication Analysis

Top Keywords

mouse newborns
8
dna double-strand
8
double-strand breaks
8
neural stem/progenitor
8
stem/progenitor cells
8
ionizing radiation
8
newborn brains
8
high susceptibility
4
susceptibility mouse
4
newborns delayed
4

Similar Publications

Vitamin A enhances PI3K/Akt signaling and mitigates enterocyte apoptosis in a mouse model of necrotizing enterocolitis.

Pediatr Surg Int

January 2025

Department of Neonatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.

Purpose: This study aims to elucidate the roles of the PI3K-Akt signaling pathway and enterocyte apoptosis in necrotizing enterocolitis (NEC) pathogenesis and investigate the impact of vitamin A intervention on these factors.

Methods: We employed an NEC mouse model and administered vitamin A treatment. Retinol levels in mouse blood were quantified using ELISA.

View Article and Find Full Text PDF

A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of HS in promoted chronic diabetic wound repair.

Regen Biomater

November 2024

Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.

Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.

View Article and Find Full Text PDF

Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD.

View Article and Find Full Text PDF

BK channels mediate a presynaptic form of mGluR-LTD in the neonatal hippocampus.

Proc Natl Acad Sci U S A

January 2025

Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile.

BK channels can control neuronal function, but their functional relevance in activity-dependent changes of synaptic function remains elusive. Here, we report that repetitive low-frequency stimulation activates BK channels through 12(S)HPETE, an arachidonic acid metabolite, produced downstream of postsynaptic metabotropic glutamate receptors (mGluRs) to trigger long-term depression (LTD) at CA3-CA1 synapses in hippocampal slices from P7-P10 mice. Activation of BK channels is subunit specific, as paxilline but not iberiotoxin blocked mGluR-LTD.

View Article and Find Full Text PDF

() is a common pathogen that causes diarrhea in newborns and animals. Antibiotics are typically used to treat bacterial diarrhea, a global intestinal health issue. Probiotics have gained interest as a potential substitute for antibiotics in the management of -induced diarrhea and present novel therapeutic options.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!