The present study examined impacts of crude oil exposure on dyad competition in juvenile red drum. Following the 2010 Deepwater Horizon oil spill, it has become well established that oil exposure can constrain maximum metabolic rate, reduce aerobic scope and exercise performance in marine fish. Aerobic scope is one of the physiological characteristics that is a known determinant of dominance in fish social hierarchy formation. As such, oil exposure may predispose individuals to subordinate social status, complete with the concomitant ecological costs. We tested this hypothesis on the gregarious Gulf of Mexico species, the red drum (Sciaenops ocellatus). Using a standard dyad, one-on-one, test design, we first assessed the parameters - including size and aerobic scope- that predict social dominance. Of the tested parameters, only aerobic scope was predictive of social dominance, with dominant individuals consistently having higher aerobic scopes than subordinates. Hierarchy formation between individuals exposed to one of two oil concentrations (5.7 ± 0.5 and 9.0 ± 0.2 μg l ΣPAH) and unexposed conspecifics were then investigated. As hypothesized, fish exposed to both oil concentrations were more likely to be subordinate than what would occur by random chance. These results demonstrate that the physiological constraints imposed by oil exposure can affect social status and behavior in fishes, which can have downstream consequences for ecological fitness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2018.08.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!