Invadopodia are actin-based cortical protrusions of tumour cells, and required for stromal invasion and metastasis. Extracellular matrix protein 1 (ECM1) has long been regarded as a secretory protein, but the mechanism of its precise functions in tumour cells is still obscure. Recently published data suggested a function of ECM1 in remodelling the actin cytoskeleton; however, its role in invadopodia formation remains unknown. Here, we demonstrated for the first time that ECM1 was a membrane protein and was essential for invadopodia formation by breast cancer cells. ECM1 depletion attenuated the ability of tumour cells to matrix attachment, invasion, and spontaneous metastasis to the lungs of mice. Additionally, co-expression of ECM1 and moesin (MSN) was closely related to aggressive breast cancer phenotypes. ECM1 interacted with MSN and recruited it adjacent to the membrane in order to promote MSN membrane translocation and phosphorylation, which facilitated invadopodia formation by breast cancer cells. These results elucidate a novel mechanism underlying the role of ECM1 in breast cancer metastasis and suggest ECM1 as a potential therapeutic target for overcoming tumour dissemination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2018.08.022DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
invadopodia formation
16
formation breast
12
tumour cells
12
extracellular matrix
8
matrix protein
8
cancer metastasis
8
ecm1
8
cancer cells
8
invadopodia
5

Similar Publications

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Introduction: Management of pain associated with breast cancer surgeries is crucial in reducing incidence of postmastectomy pain syndrome. The pain distribution involves the anterior chest wall, axillary area and ipsilateral upper limb.

Objective: This study was designed to investigate the effect of bilevel erector spinae plane block (ESPB) with high thoracic block vs the conventional unilevel ESPB vs opioids in patients with cancer undergoing modified radical mastectomy regarding pain control and reducing pain in axilla.

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer among women. In response to the need to hospital stays and minimize waiting time for surgery, particularly during the COVID-19 pandemic, the National Cancer Institute developed the One Day Surgery with Breast cancer Home Recovery program (ODS BHR NCI). The aim of study is to assess the success rate of breast cancer surgeries conducted through this program and to evaluate the incidence of complications.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!