Mesoporous silica nanoparticles (MSNs) have drawn attention as efficient nanocarriers for drug delivery systems owing to their unique physiochemical properties. However, systemically controlling the kinetics of drug release from the nanocarriers and in situ monitoring of the drug release are still challenging. Here, we report surface-capped MSNs used for controlled drug release and demonstrate label-free in situ Raman monitoring of released drugs based on the molecule-specific spectral fingerprints. By capping the surface of MSNs with amine moieties, gold nanoparticles, and albumin, we achieved high loading efficiencies (up to 97%) of doxorubicin and precisely controlled drug release stimulated by changing pH value. Moreover, we monitored in real-time drug release profile and visualized cellular distribution of the delivered drug at nanoscale based on its intrinsic Raman peak. Finally, we evaluated drug responses in cancer cells and normal cells to investigate whether capped-dMSNs exhibit selective drug release. Our findings would be beneficial for designing smart drug carriers and directly monitoring the release behavior of drugs in actual cellular environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2018.08.012DOI Listing

Publication Analysis

Top Keywords

drug release
28
controlled drug
12
drug
10
release
8
mesoporous silica
8
silica nanoparticles
8
label-free situ
8
situ raman
8
raman monitoring
8
release surface-capped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!