AI Article Synopsis

  • Deaf signers exhibit a larger Visual Field (VF), particularly in the lower part, possibly due to early deafness or frequent sign language use.
  • The study aimed to investigate if hearing users of sign language have enhanced VF sensitivity, especially in the lower VF, compared to hearing non-signers.
  • Results showed that hearing signers had higher luminance sensitivity in the lower VF (3 to 15°) where sign language gestures are perceived, suggesting that sign language experience can influence VF sensitivity independently of deafness.

Article Abstract

Studies have observed that deaf signers have a larger Visual Field (VF) than hearing non-signers with a particular large extension in the lower part of the VF. This increment could stem from early deafness or from the extensive use of sign language, since the lower VF is critical to perceive and understand linguistics gestures in sign language communication. The aim of the present study was to explore the potential impact of sign language experience without deafness on the VF sensitivity within its lower part. Using standard Humphrey Visual Field Analyzer, we compared luminance sensitivity in the fovea and between 3 and 27 degrees of visual eccentricity for the upper and lower VF, between hearing users of French Sign Language and age-matched hearing non-signers. The sensitivity in the fovea and in the upper VF were similar in both groups. Hearing signers had, however, higher luminance sensitivity than non-signers in the lower VF but only between 3 and 15°, the visual location for sign language perception. Sign language experience, no associated with deafness, may then be a modulating factor of VF sensitivity but restricted to the very specific location where signs are perceived.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2018.08.003DOI Listing

Publication Analysis

Top Keywords

sign language
28
visual field
12
hearing users
8
hearing non-signers
8
language experience
8
luminance sensitivity
8
sensitivity fovea
8
sign
7
language
7
visual
5

Similar Publications

Background/objectives: Specific tests for the assessment of language development and language skills in deaf children are scarce. For this reason, parent inventories and/or standardized tests that are reliable and valid in the hearing population are used. The main aim of this study was to assess the usefulness of the Clinical Evaluation of Language Fundamentals 5 (CELF5) in determining the language skills of hearing-impaired children in a comprehensive way in comparison to their hearing peers.

View Article and Find Full Text PDF

Liquid-Metal-Based Multichannel Strain Sensor for Sign Language Gesture Classification Using Machine Learning.

ACS Appl Mater Interfaces

January 2025

Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.

Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.

View Article and Find Full Text PDF

Background And Purpose: Vestibular migraine (VM) is a common clinical disorder with a genetic predisposition characterized by recurrent episodes of dizziness/vertigo. Patients often complain of the presence of cognitive dysfunction manifestations such as memory loss, which causes great distress in daily life. In this study, we will explore the characteristics and possible risk factors of VM-related cognitive dysfunction by observing the cognitive function and vestibular function status of VM patients, laying the foundation for further exploration of the mechanisms of VM-related cognitive dysfunction.

View Article and Find Full Text PDF

The visual environment of sign language users is markedly distinct in its spatiotemporal parameters compared to that of non-signers. Although the importance of temporal and spectral resolution in the auditory modality for language development is well established, the spectrotemporal parameters of visual attention necessary for sign language comprehension remain less understood. This study investigates visual temporal resolution in learners of American Sign Language (ASL) at various stages of acquisition to determine how experience with sign language affects perceptual sampling.

View Article and Find Full Text PDF

Sign recognition: the effect of parameters and features in sign mispronunciations.

Linguist Vanguard

December 2024

Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Ecole Normale Supérieure - PSL, 29 rue d'Ulm, 75005 Paris, France.

We investigate the degree to which mispronounced signs can be accommodated by signers of French Sign Language (LSF). Using an offline judgment task, we examine both the individual contributions of three parameters - handshape, movement, and location - to sign recognition, and the impact of the individual features that were manipulated to obtain the mispronounced signs. Results indicate that signers judge mispronounced handshapes to be less damaging for well-formedness than mispronounced locations or movements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!