The ability to perceive changes in motion, such as rapid changes of speed, has important ecological significance. We show that exogenous and endogenous attention have different effects on speed-change perception and operate differently in different regions of the visual field. Using a spatial-cueing paradigm, with either exogenous or endogenous cues followed by drifting Gabor patches of changing speed that appear at the cued or uncued location, we measured participants' thresholds for localizing both acceleration and deceleration of the Gabor patches in different regions (5° and 10°) of the visual field. The results revealed a larger exogenous cueing effect, indexed by a lower threshold for the cued relative to the uncued conditions, at 5° for perceiving acceleration and at 10° for perceiving deceleration. Endogenous attention, in contrast, improved performance equally at both eccentricities. We conclude that exogenous and endogenous spatial orienting constitute two independent attentional systems, with distinct modulation patterns on speed change perception in the visual field. While exogenous attentional modulation is eccentricity-dependent, endogenous attention acts homogeneously in perifoveal and near-peripheral regions of the visual field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117019 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203024 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!