This article presents a validated mathematical model of a dielectrophoresis (DEP)-based microfluidic device capable of 3D-focusing microscale entities at any lateral location inside the microchannel. The microfluidic device employs planar, independently controllable, interdigitated transducer (IDT) electrodes on either side of the microchannel. The developed model is used for understanding the influence of different geometric and operating parameters on 3D focusing, and it comprises of motion equation, Navier-Stokes equation, continuity equation, and electric potential equation (Laplace equation). The model accounts for forces associated with inertia, gravity, buoyancy, virtual mass, drag, and DEP. The model is solved using finite difference method. The findings of the study indicate that the 3D focusing possible with the proposed microfluidic device is independent of microscale entity's size and initial position, microchannel height, and volumetric flow rate. In contrast, 3D focusing achievable with the microfluidic device is dependent on the applied electric potential, protrusion width of electrodes, and width of electrode/gap. Additionally, the lateral position of 3D focused can be controlled by varying the applied electric potential. The advantage of the proposed microfluidic device is that it is simple to construct while capable of achieving 3D focusing at any lateral location inside the microchannel.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.23569DOI Listing

Publication Analysis

Top Keywords

microfluidic device
20
electric potential
12
3d-focusing microscale
8
microscale entities
8
lateral location
8
location inside
8
inside microchannel
8
proposed microfluidic
8
applied electric
8
microfluidic
6

Similar Publications

Unlabelled: Group A (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape.

View Article and Find Full Text PDF

Visualizing the DNA Damage Response in Purkinje Cells Using Cerebellar Organotypic Cultures.

J Vis Exp

December 2024

The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, School of Medicine, Tel Aviv University;

Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration.

View Article and Find Full Text PDF

Blood-contacting medical devices, especially extracorporeal membrane oxygenators (ECMOs), are highly susceptible to surface-induced coagulation because of their extensive surface area. This can compromise device functionality and lead to life-threatening complications. High doses of anticoagulants, combined with anti-thrombogenic surface coatings, are typically employed to mitigate this risk, but such treatment can lead to hemorrhagic complications.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of dementia worldwide, and the development of early screening methods can address its significant health and social consequences. In this paper, we present a rotary-valve assisted paper-based immunoassay device (RAPID) for early screening of AD, featuring a highly integrated on-chip rotary micro-valve that enables fully automated and efficient detection of the AD biomarker (amyloid beta 42, Aβ42) in artificial plasma. The microfluidic paper-based analytical device (μPAD) of the RAPID pre-stores the required assay reagents on a μPAD and automatically controls the liquid flow through a single valve.

View Article and Find Full Text PDF

Extracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!