We present an oxide aperture microcavity with embedded quantum dots which utilizes a three-contact design to independently tune the quantum dot wavelength and birefringence of the cavity modes. A polarization splitting tuning of ∼5 GHz is observed. For a typical microcavity polarization splitting, the method can be used to achieve perfect polarization degeneracy that is required for many polarization-based implementations of photonic quantum gates. The embedded quantum dot wavelength can be tuned into resonance with the cavity, independent of the polarization tuning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.43.004280 | DOI Listing |
Nano Lett
January 2025
Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Metasurfaces supporting narrowband resonances are of significant interest in photonics for molecular sensing, quantum light source engineering, and nonlinear photonics. However, many device architectures rely on large refractive index dielectric materials and lengthy fabrication processes. In this work, we demonstrate quasi-bound states in the continuum (quasi-BICs) using a polymer metasurface exhibiting experimental quality factors of 305 at visible wavelengths.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Electrical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India.
Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.
View Article and Find Full Text PDFLight Sci Appl
January 2025
National and Local United Engineering Laboratory of Flat Panel Display Technology, College of Physics and Information Engineering, Fuzhou University, 350108, Fuzhou, China.
Multifunctional materials have attracted tremendous attention in intelligent and interactive devices. However, achieving multi-dimensional sensing capabilities with the same perovskite quantum dot (PQD) material is still in its infancy, with some considering it currently challenging and even unattainable. Drawing inspiration from neurons, a novel multifunctional CsPbBr/PDMS nanosphere is devised to sense humidity, temperature, and pressure simultaneously with unique interactive responses.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Department of Ocean Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.
In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
Based on nitrogen and phosphorus co-doped carbon dots (NP-CDs), a direct, quick, and selective sensing probe for fluorometric detection of rutin has been developed. Utilizing ethylene diamine tetra acetic acid (EDTA) as a carbon and nitrogen source and diammonium hydrogen phosphate (NH)HPO as a nitrogen and phosphorus source. The NP-CDs were synthesized in less than 3 min with a straightforward one-step microwave pyrolysis process with a high quantum yield (63.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!