Total As and As speciation were measured in 147 red wines collected worldwide by ICP-MS and HPLC-ICP-MS, respectively. The samples included mid-priced to prestigious wines with vintages covering a period of almost 50 years. Total As concentration ranged from below 0.1 to 56 µg/L (average value: 4.0 ± 5.9 µg/L). None of the samples presented a concentration exceeding the limit set by the Office of Vine and Wine of 200 µg/L. Inorganic As was the most abundant form, representing from about half to all total As, mainly as As(III). Dimethylarsinic-acid (DMA) was detected in slightly less than half of the samples, accounting for a few to several dozens of percent. Monomethylarsonic-acid (MMA) was only detected in a few samples. In average, the DMA concentration seemed to be higher in the Bordeaux wines than in the other ones, irrespective of the total As concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19393210.2018.1504823DOI Listing

Publication Analysis

Top Keywords

total speciation
8
total concentration
8
total
5
samples
5
speciation worldwide
4
worldwide collected
4
collected red
4
red wine
4
wine samples
4
samples total
4

Similar Publications

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

The speciation and mobility of arsenic (As) in waters are largely influenced by the colloids; however, the impacts of colloids with different molecular weights (MWs) in water fractions remain largely unknown. Herein, the surface water was fractionated into three colloidal fractions and truly dissolved fraction via cross-flow ultrafiltration. Total As (As(T)) presented mainly as As(V) and existed primarily in the truly dissolved fraction.

View Article and Find Full Text PDF

Marine and atmospheric transport modeling supporting nuclear preparedness in Norway: Recent achievements and remaining challenges.

Sci Total Environ

January 2025

Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O.Box 5003, NO-1432 Ås, Norway.

Numerical transport models are important tools for nuclear emergency decision makers in that they rapidly provide early predictions of dispersion of released radionuclides, which is key information to determine adequate emergency protective measures. They can also help us understand and describe environmental processes and can give a comprehensive assessment of transport and transfer of radionuclides in the environment. Transport of radionuclides in air and ocean is affected by a number of different physico-chemical processes.

View Article and Find Full Text PDF

Identification and Assessment of Toxic Substances in Environmental Justice Cases.

Toxics

December 2024

Department of Environmental Science, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

This study assessed heavy metal contamination in industrial solid waste (S1, S2, S3, and S4) from the Yangtze River Delta region, employing nine risk assessment methods including total content indices (e.g., Igeo, CF) and speciation indices (e.

View Article and Find Full Text PDF

The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing.

Toxics

November 2024

Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April 2023, focusing on VOC concentrations and speciations, diurnal variations, ozone formation potential (OFP), source identification, and associated health risks. The results revealed an average total VOC (TVOC) concentration of 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!