Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In a previous study, we have showed that the elongation of an alanine oligopeptide [L-alanyl-L-alanyl-L-alanyl-L-alanine ((Ala))] to higher oligopeptides is enhanced by calcite and dolomite at 275°C, using a mineral-mediated hydrothermal flow reactor system. However, a problem during the use of hydrothermal flow reactor system was that some of the minerals, such as clay, could not be tested due to their clogging in the reactor. In this article, we attempted to analyze the scope of enhancement for the formation of L-alanyl-L-alanyl-L-alanyl-L-alanyl-L-alanine ((Ala)) and higher oligopeptides with different minerals including clay minerals for the elongation of alanine oligopeptide at 175°C. First, carbonate minerals and some clay minerals showed an enhancement of the formation of (Ala) from (Ala). On the contrary, volcanic products showed strong inhibitory activities. According to the pH dependence on the (Ala) elongations, we confirmed that most enhancement and inhibitory activities are due to the pH influence on the elongation of (Ala). However, the enhancement of montmorillonite (Tsukinuno), sphalerite, apatite, tourmaline, calcite (Nitto Funka), and the inhibitory activities by volcanic ash (Shinmoedake), volcanic ash (Sakurajima), dickite, and pyrophillite are not simply due to the pH change in the presence of these minerals. The difference found between the previous and present studies suggests that the interaction kinetics of the aqueous phase with the mineral phase is also an important factor for the elongation of (Ala). These data imply that the environments with pH near neutral to weak alkaline and with minerals might have been useful for the accumulation of oligopeptides in hydrothermal conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ast.2017.1732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!