One of the bottlenecks often encountered in electro-Fenton technology is its low ability to produce hydrogen peroxide (HO). Thus, the hunt of suitable electrodes and reactor are a must to be tackled in order to improve the efficiency of the system. In this study, three-dimensional nickel foam was selected as cathode for generating HO efficiently and graphite was the control group in an enhanced oxygen mass transfer reactor. The micro-structure and electrochemical performance of electrodes were tested by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV), electro-chemical impedance spectroscopy (EIS) and Tafel polarization techniques, respectively. The concentration of HO produced by nickel foam cathode was 780.63 μmol/L and the removal efficiency of rhodamine B (RhB) was reached to 92.5% in 60 min. SEM and Tafel results showed that both nickel foam and graphite electrodes were porous structure cathodes. Moreover, CV and EIS experimental results indicated nickel foam electrode was controlled by charge transfer process while had a better transfer than graphite electrode. Electron spin resonance (ESR) spectra results demonstrated that the main oxidant species involved was ·OH, accounting for RhB degradation in electro-Fenton progress. Therefore, in terms of pollutant degradation in the electro-Fenton process, nickel foam electrode together with novel reactor was a promising technique.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2018.1509890DOI Listing

Publication Analysis

Top Keywords

nickel foam
24
foam electrode
12
three-dimensional nickel
8
novel reactor
8
degradation electro-fenton
8
foam
6
nickel
5
electrode
4
electrode efficient
4
electro-fenton
4

Similar Publications

The sluggish kinetics of the hydrogen evolution reaction (HER) result in a high overpotential in alkaline solutions. A high-curvature metal oxide heterostructure can effectively boost the electrocatalytic HER by leveraging the tip-enhanced local electric field effect. Herein, NiP/NiMoO nanocones were synthesised on a nickel foam (NF) substrate by etching a metal-organic framework template.

View Article and Find Full Text PDF

A safe and robust in-situ polymerized cementitious electrolyte coupled with NiCoS@CuCoS electrode for superior load-bearing integrated electrochemical capacitor.

J Colloid Interface Sci

January 2025

Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804 PR China. Electronic address:

Load bearing/energy storage integrated devices (LEIDs) featuring cementitious electrolytes have become ideal for large-scale energy storage. Nevertheless, the progression of LEIDs is still in its nascent phase and considerable endeavors concerning cementitious electrolytes and electrode materials are necessary to further boost the charge storage ability. Here, we propose a facile synchronous reaction method for preparing sodium acrylate (SA)-based in-situ polymerized cementitious electrolyte.

View Article and Find Full Text PDF

Electrocatalytic Biomass Oxidation via Acid-Induced In Situ Surface Reconstruction of Multivalent State Coexistence in Metal Foams.

Adv Mater

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China.

Electrocatalytic biomass conversion offers a sustainable route for producing organic chemicals, with electrode design being critical to determining reaction rate and selectivity. Herein, a prediction-synthesis-validation approach is developed to obtain electrodes for precise biomass conversion, where the coexistence of multiple metal valence states leads to excellent electrocatalytic performance due to the activated redox cycle. This promising integrated foam electrode is developed via acid-induced surface reconstruction to in situ generate highly active metal (oxy)hydroxide or oxide (MOH or MO) species on inert foam electrodes, facilitating the electrooxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-furandicarboxylic acid (FDCA).

View Article and Find Full Text PDF

Synergizing RuO with Fe-doped CoRuO for boosting alkaline electrocatalytic oxygen evolution reaction.

J Colloid Interface Sci

April 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China. Electronic address:

Designing and development of electrocatalysts with high catalytic capacity and stability for oxygen evolution reaction (OER) is significant for sustainable water splitting. In this study, we rationally designed Fe-doped CoRuO/RuO heterostructure electrocatalysts on nickel foam (NF) through mixture hydrothermal, ion exchanging, and calcining methods. The synergistic effect between the Fe-CoRuO/RuO heterogeneous interfaces can result in superior inherent activity.

View Article and Find Full Text PDF

NiFe-based arrays with manganese dioxide enhance chloride blocking for durable alkaline seawater oxidation.

J Colloid Interface Sci

April 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China; Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China. Electronic address:

Seawater splitting is increasingly recognized as a promising technique for hydrogen production, while the lack of good electrocatalysts and detrimental chlorine chemistry may hinder further development of this technology. Here, the interfacial engineering of manganese dioxide nanoparticles decorated on NiFe layered double hydroxide supported on nickel foam (MnO@NiFe LDH/NF) is reported, which works as a robust catalyst for alkaline seawater oxidation. Density functional theory calculations and experiment findings reveal that MnO@NiFe LDH/NF can selectively enrich OH and repel Cl in oxygen evolution reaction (OER).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!