Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: 25-Hydroxyvitamin D [25(OH)VD] deficiency/inadequacy is a major public health issue affecting more than 1 billion people worldwide. A convincing association exists between low levels of circulating 25(OH)VD and the poor health outcomes associated with chronic diseases. However, high supraphysiological doses of VD are needed to achieve the required 25(OH)VD levels in the blood, because many subjects respond poorly to supplementation.
Results: This study reports a link between 25(OH)VD deficiency and a reduction in glutathione (GSH) in obese adolescents. The improvement in GSH status that results from cosupplementation with VD and l-cysteine (LC; a GSH precursor) significantly reduced oxidative stress in a mouse model of 25(OH)VD deficiency. It also positively upregulated VD regulatory genes (VDBP/VD-25-hydroxylase/VDR) in the liver and glucose metabolism genes (PGC-1α/VDR/GLUT-4) in muscle, boosted 25(OH)VD, and reduced inflammation and insulin resistance (IR) levels in the blood compared with supplementation with VD alone. In vitro GSH deficiency caused increased oxidative stress and downregulation of VDBP/VD-25-hydroxylase/VDR and upregulation of CYP24a1 in hepatocytes and downregulation of PGC-1α/VDR/GLUT-4 in myotubes. This study demonstrates that improvement in the GSH status exerts beneficial effects on the blood levels of 25(OH)VD, as well as on the inflammation and IR in a VD-deficient mouse model. Thus, the VD supplements widely consumed by the public are unlikely to be successful unless the GSH status is also corrected.
Innovation: These studies demonstrate a previously undiscovered mechanism by which GSH status positively upregulates the bioavailability of 25(OH)VD.
Conclusion: Supplementation with a combination of VD and LC or GSH precursor, rather than supplementation with VD alone, is beneficial and helps achieve more successful VD supplementation. Antioxid. Redox Signal. 00, 000-000.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208166 | PMC |
http://dx.doi.org/10.1089/ars.2017.7462 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!