Today, silicon is the most used material in photovoltaics, with the maximum conversion efficiency getting very close to the Shockley-Queisser limit for single-junction devices. Integrating silicon with higher band-gap ternary III-V absorbers is the path to increase the conversion efficiency. Here, we report on the first monolithic integration of Ga InP vertical nanowires, and the associated p-n junctions, on silicon by the Au-free template-assisted selective epitaxy (TASE) method. We demonstrate that TASE allows for a high chemical homogeneity of ternary alloys through the nanowires. We then show the influence of doping on the chemical composition and crystal phase, the latter previously attributed to the role of the contact angle in the liquid phase in the vapor-liquid-solid technique. Finally, the emission of the p-n junction is investigated, revealing a shift in the energy of the intraband levels due to the incorporation of dopants. These results clarify some open questions on the effects of doping on ternary III-V nanowire growth and provide the path toward their integration on the silicon platform in order to apply them in next-generation photovoltaic and optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b10770 | DOI Listing |
An InSe/Ge heterojunction is fabricated via molecular beam epitaxy. The p-n junction device features a broadened photosensitive spectrum ranging from a visible (VIS) to short-wave infrared (SWIR) region (400-1700 nm). Notably, self-powered high responsivity of 0.
View Article and Find Full Text PDFACS Omega
December 2024
UCL Institute for Materials Discovery, University College London, Malet Place, London WC1E 7JE, United Kingdom.
Transparent conducting oxides (TCOs) are widely used in modern electronics because they have both high transmittance and good conductivity, which is beneficial for many applications such as light-emitting diodes. Tailoring electronic states and hence the conductive types by design is important for developing new materials with optimal properties for TCOs. SnO, with a wide band gap, low cost, no toxins, and high stability, is a promising host material for TCOs.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Institute of Micro and Nano Electronics, Chavchavadze Ave. 13, Tbilisi 0179, Georgia.
Recently, geometry-induced quantum effects in a new quasi-1D system, or nanograting (NG) layers, were introduced and investigated. Dramatic changes in band structure and unconventional photoluminescence effects were found in silicon quantum wells with high-energy barriers. Nanograting metal-semiconductor junctions were fabricated and investigated.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
We demonstrate an approach to creating nanoscale potentials in van der Waals layers integrated with a buried programmable ferroelectric layer. Using ultra-low-voltage electron beam lithography (ULV-EBL), we can program the ferroelectric polarization in AlBN (AlBN) thin films, generating structures with sizes as small as 35 nm. We demonstrate the ferroelectric field effect with a graphene/vdW stack on AlBN by creating a p-n junction.
View Article and Find Full Text PDFJ Mater Chem A Mater
November 2024
Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
Solar redox flow batteries (SRFB) have received much attention as an alternative integrated technology for simultaneous conversion and storage of solar energy. Yet, the photocatalytic efficiency of semiconductor-based single photoelectrodes, such as hematite, remains low due to the trade-off between fast electron hole recombination and insufficient light utilization, as well as inferior reaction kinetics at the solid/liquid interface. Herein, we present an α-FeO/Cu O p-n junction, coupled with a readily scalable nanostructure, that increases the electrochemically active sites and improves charge separation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!