Urban stormwater, municipal wastewater effluent, and agricultural runoff contain trace amounts of organic contaminants that can compromise water quality. To provide a passive, low-cost means of oxidizing substituted phenols, aromatic amines, and other electron-rich organic compounds during infiltration of contaminated waters, we coated sand with manganese oxide using a new approach involving the room-temperature oxidation of Mn with permanganate. Manganese oxide-coated sand effectively oxidized bisphenol A under typical infiltration conditions and sustained reactivity longer than previously described geomedia. Because geomedia reactivity decreased after extended operation, chlorine was evaluated for use as an in situ geomedia regenerant. Geomedia regenerated by HOCl demonstrated similar reactivity and longevity to that of virgin geomedia. Chemical analyses indicated that the average manganese oxidation state of the coatings decreased as the geomedia passivated. X-ray absorption spectroscopy and X-ray diffraction showed that the reactive virgin and regenerated geomedia coatings had nanocrystalline manganese oxide structures, whereas the failed geomedia coating exhibited greater crystallinity and resembled cryptomelane. These results suggest that it is possible to regenerate the oxidative capacity of manganese oxide-coated sands without excavating stormwater infiltration systems. These results also suggest that manganese oxide geomedia may be a cost-effective means of treating urban stormwater and other contaminated waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b03304 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!