Machine learning technique reveals intrinsic characteristics of schizophrenia: an alternative method.

Brain Imaging Behav

Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, Singapore.

Published: October 2019

Machine learning technique has long been utilized to assist disease diagnosis, increasing clinical physicians' confidence in their decision and expediting the process of diagnosis. In this case, machine learning technique serves as a tool for distinguishing patients from healthy people. Additionally, it can also serve as an exploratory method to reveal intrinsic characteristics of a disease based on discriminative features, which was demonstrated in this study. Resting-state functional magnetic resonance imaging (fMRI) data were obtained from 148 participants (including patients with schizophrenia and healthy controls). Connective strengths were estimated by Pearson correlation for each pair of brain regions partitioned according to automated anatomical labelling atlas. Subsequently, consensus connections with high discriminative power were extracted under the circumstance of the best classification accuracy. Investigating these consensus connections, we found that schizophrenia group predominately exhibited weaker strengths of inter-regional connectivity compared to healthy group. Aberrant connectivities in both intra- and inter-hemispherical connections were observed. Within intra-hemispherical connections, the number of aberrant connections in the right hemisphere was more than that of the left hemisphere. In the exploration of large regions, we revealed that the serious dysconnectivities mainly appeared on temporal and occipital regions for the within-large-region connections; while connectivity disruption was observed on the connections from temporal region to occipital, insula and limbic regions for the between-large-region connections. The findings of this study corroborate previous conclusion of dysconnectivity in schizophrenia and further shed light on distribution patterns of dysconnectivity, which deepens the understanding of pathological mechanism of schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11682-018-9947-4DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning technique
12
intrinsic characteristics
8
connections
8
consensus connections
8
schizophrenia
5
technique reveals
4
reveals intrinsic
4
characteristics schizophrenia
4
schizophrenia alternative
4

Similar Publications

Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.

Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.

View Article and Find Full Text PDF

Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.

Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).

Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.

View Article and Find Full Text PDF

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification.

View Article and Find Full Text PDF

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.

J Chem Inf Model

January 2025

Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.

Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!