Ozone and a Fe/TiO-based catalyst were examined in the degradation of a synthetic solution of benzene toluene and xylene (BTX) in an advanced oxidation process (AOP). The catalyst beads were made from the slurry waste of aluminum production process, by inserting the TiO content and subsequent calcination. The reduction of the BTX concentration load was monitored by the reduction of chemical oxygen demand (COD) and BTX concentration. Different levels were used on factors: pH, time of treatment, initial concentration of BTX, and percentage of TiO. The process was conducted in a bubble column reactor with the insertion of catalyst beads. A response surface methodology technique (CCD) was used to build a model based on COD reduction results. The model was optimized using the normal-boundary intersection (NBI) algorithm to maximize COD reduction and minimize the variance attributed to the process. Optimization led to COD reductions of 80% in 2 h of experiment. Correlation analysis of coefficient models from experimental data R was 0.9966, showing a good fit of model data. In the optimized conditions, the possible increase of the biodegradability ratio of the BTX solution, through the biochemical oxygen demand (BOD) and COD, was also analyzed. Under pre-treatment conditions, the BOD/COD ratio was 0.13. After the treatment, it increased to 0.56. Graphical abstract ᅟ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-018-6924-8 | DOI Listing |
Pharmaceutics
November 2024
Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
Nitazoxanide (NTX) exhibits promising therapeutic potential; its effectiveness is constrained by its low oral bioavailability due to its poor water solubility and limited permeability. This study focused on developing a complex of NTX with β-cyclodextrins (β-CDs), specifically β-CD and hydroxypropyl-β-cyclodextrin (Hβ-CD), to enhance the solubility and antiviral activity of NTX. The formation of the β-CD:NTX in an aqueous solution was verified using UV-visible spectroscopy, confirming a 1:1 inclusion complex.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
Unlabelled: Cytarabine (CTR) is a hydrophilic anticancer drug used to treat leukemia. It suffers from poor permeability and intestinal metabolism, diminishing its oral bioavailability.
Background/objectives: The objective was to develop and evaluate niosomes and bilosomes for enhanced intestinal absorption; hence, oral bioavailability.
Molecules
December 2024
"Coriolan Drăgulescu" Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania.
Bacterial contamination is a major public health concern on a global scale. Treatment resistance in bacterial infections is becoming a significant problem that requires solutions. We were interested in obtaining new polymeric functionalized compounds with antibacterial properties.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:
The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
There is a gap in understanding the different contributions of biodegradation and free radical oxidation using calcium peroxide (CaO) for the remediation of mixed contaminants of benzene and chlorobenzene in groundwater. In this study, the remedial efficiency and mechanisms of benzene and chlorobenzene co-contaminants using CaO were explored by an integrated approach of field study and laboratory validation. It was found that in the field demonstration program, the radius of influence for each injection point using Geoprobe direct-push was larger than the designed value of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!