Multiplex QTL editing of grain-related genes improves yield in elite rice varieties.

Plant Cell Rep

Department of Biotechnology, Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China.

Published: April 2019

Significant yield increase has been achieved by simultaneous introduction of three trait-related QTLs in three rice varieties with multiplex editing by CRISPR-Cas9. Using traditional breeding approaches to develop new elite rice varieties with high yield and superior quality is challenging. It usually requires introduction of multiple trait-related quantitative trait loci (QTLs) into an elite background through multiple rounds of crossing and selection. CRISPR-Cas9-based multiplex editing of QTLs represents a new breeding strategy that is straightforward and cost effective. To test this approach, we simultaneously targeted three yield-related QTLs for editing in three elite rice varieties, namely J809, L237 and CNXJ. The chosen yield-related QTL genes are OsGS3, OsGW2 and OsGn1a, which have been identified to negatively regulate the grain size, width and weight, and number, respectively. Our approach rapidly generated all seven combinations of single, double and triple mutants for the target genes in elite backgrounds. Detailed analysis of these mutants revealed differential contributions of QTL mutations to yield performance such as grain length, width, number and 1000-grain weight. Overall, the contributions are additive, resulting in 68 and 30% yield per panicle increase in triple mutants of J809 and L237, respectively. Our data hence demonstrates a promising genome editing approach for rapid breeding of QTLs in elite crop varieties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-018-2340-3DOI Listing

Publication Analysis

Top Keywords

rice varieties
16
elite rice
12
multiplex editing
8
qtls elite
8
j809 l237
8
triple mutants
8
elite
6
editing
5
yield
5
varieties
5

Similar Publications

Variation in a single allele drives divergent yield responses to elevated CO between rice subspecies.

Nat Commun

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.

Rising atmospheric CO generally increases yield of indica rice, one of the two main Asian cultivated rice subspecies, more strongly than japonica rice, the other main subspecies. The molecular mechanisms driving this difference remain unclear, limiting the potential of future rice yield increases through breeding efforts. Here, we show that between-species variation in the DNR1 (DULL NITROGEN RESPONSE1) allele, a regulator of nitrate-use efficiency in rice plants, explains the divergent response to elevated atmospheric CO (eCO) conditions.

View Article and Find Full Text PDF

Rice (Oryza sativa ) is a crucial staple crop worldwide, providing nutrition to more than half of the global population. Nonetheless, the sustainability of grain production is increasingly jeopardized by both biotic and abiotic stressors exacerbated by climate change, which increases the crop's rvulnerability to pests and diseases. Genome-editing by clustered regularly interspaced short palindromic repeats and CRISPR-associated Protein 9 (CRISPR-Cas9) presents a potential solution for enhancing rice productivity and resilience under climatic stress.

View Article and Find Full Text PDF

Unraveling key ABA pathways, including OsWRKY71-OsABA8ox1 and OsbZIP73-OsNCED5, provides valuable insights for improving cold tolerance in rice breeding for cold-prone regions. Cold stress limits rice (Oryza sativa L.) production in cooler climates.

View Article and Find Full Text PDF

Sheath blight, caused by AG1 IA, is a challenging disease of rice worldwide. In the current study, nine isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, AG1 IA -isolate SHBP9 was the most aggressive isolate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!