Phosphoglycolate phosphatases from spinach and human red blood cells show a number of common features not often found in enzymes. Both enzymes are activated more than 50-fold by millimolar concentrations of Cl-. Other inorganic anions and a number of carboxylic acids also activate. Each enzyme has limited substrate specificity yet each hydrolyzes P-glycolate and ethyl-P with the same maximal velocity. L-P-lactate is only a good substrate for the red cell enzyme. With both enzymes initial rate data obtained by varying both the P-glycolate and Cl- give parallel line double reciprocal plots. Similar experiments with ethyl-P as substrate give intersecting lines with both enzymes. The likelihood that both classes of substrates are acting at the same site is strengthened by the results of inhibition studies with alternative substrates and the constancy of inhibition constants for glycolate with all substrates for a given enzyme. For each substrate the experimentally observed variation in V/Km with different activators is small, suggesting that the enzyme has an ordered mechanism with the phosphorylated substrate reacting first. A mechanism that is consistent with all of the data is presented.

Download full-text PDF

Source

Publication Analysis

Top Keywords

phosphoglycolate phosphatases
8
phosphatases spinach
8
spinach human
8
human red
8
red blood
8
blood cells
8
substrate
5
mechanism activation
4
activation anions
4
anions phosphoglycolate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!