The composition of membrane lipids is sensitive to environmental stresses. Submergence is a type of stress often encountered by plants. However, how the molecular species of membrane lipids respond to submergence has not yet been characterised. In this study, we used a lipidomic approach to profile the molecular species of membrane lipids in whole plants of that were completely submerged for three days. The plants survived one day of submergence, after which, we found that the total membrane lipids were only subtly decreased, showing significant decreases of monogalactosyldiacylglycerol (MGDG) and phosphatidylcholine (PC) and an increase of phosphatidic acid (PA); however, the basic lipid composition was retained. In contrast, three days of submergence caused plants to die, and the membranes deteriorated via the rapid loss of 96% of lipid content together with a 229% increase in PA. The turnover of molecular species from PG and MGDG to PA indicated that submergence-induced lipid changes occurred through PA-mediated degradation. In addition, molecular species of extraplastidic PG degraded sooner than plastidic ones, lyso-phospholipids exhibited various patterns of change, and the double-bond index (DBI) remained unchanged until membrane deterioration. Our results revealed the unique changes of membrane lipids upon submergence and suggested that the major cause of the massive lipid degradation could be anoxia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112195 | PMC |
http://dx.doi.org/10.1016/j.pld.2016.05.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!