Since the world economy has been confronted with an increasing risk of supply shortages of critical raw materials (CRMs), there has been a major interest in identifying alternative secondary sources of CRMs. Bauxite residues from alumina production are available at a multi-million tonnes scale worldwide. So far, attempts have been made to find alternative re-use applications for bauxite residues, for instance in cement / pig iron production. However, bauxite residues also constitute an untapped secondary source of CRMs. Depending on their geological origin and processing protocol, bauxite residues can contain considerable amounts of valuable elements. The obvious primary consideration for CRM recovery from such residues is the economic value of the materials contained. However, there are further benefits from re-use of bauxite residues in general, and from CRM recovery in particular. These go beyond monetary values (e.g. reduced investment / operational costs resulting from savings in disposal). For instance, benefits for the environment and health can be achieved by abatement of tailing storage as well as by reduction of emissions from conventional primary mining. Whereas certain tools (e.g. life-cycle analysis) can be used to quantify the latter, other benefits (in particular sustained social and technological development) are harder to quantify. This review evaluates strategies of bauxite residue re-use / recycling and identifies associated benefits beyond elemental recovery. Furthermore, methodologies to translate risks and benefits into quantifiable data are discussed. Ultimately, such quantitative data are a prerequisite for facilitating decision-making regarding bauxite residue re-use / recycling and a stepping stone towards developing a zero-waste alumina production process. © 2018 The Authors. published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100093 | PMC |
http://dx.doi.org/10.1002/jctb.5687 | DOI Listing |
Chemosphere
December 2024
College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China. Electronic address:
Heavy metals released from metallic sulfidic tailings pose significant environmental threats by contaminating surface and groundwater in mining areas. Sustainable rehabilitation methods are essential to remove or stabilize these metals, improving the quality of acid mine drainage and minimizing pollution. This study examines the adsorption capacity of zinc ions (Zn) by different iron-silicate mineral groups under natural weathering and bacteria-regulated weathered conditions.
View Article and Find Full Text PDFACS Omega
December 2024
Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China.
To immobilize the activity and bioavailability of soil Cd, the single treatment only flooding (F) and the combined treatments with flooding plus bauxite residue (F-B) or lime (F-L) were designed to investigate the impacts of different treatments on the toxicity and bioavailability of Cd in contaminated soil. Compared with the single treatment (F), the combined treatments (F-B and F-L) improved soil-associated organic functional groups and aggregated stability in soil. The average particle sizes of soil aggregates increased from 126 nm (F-treated soil) to 256 and 270 nm following F-B and F-L treatments, respectively.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:
Bioresour Technol
November 2024
FPInnovations, 2665 East Mall, Vancouver, BC V6T 1Z4, Canada.
Biomass gasification as a renewable energy technology has been a widely explored research and development area. The efficient and economic removal of harmful components, particularly tars, in raw syngas from the biomass gasifier is still a major challenge. In this study, a novel two-stage fluidized bed pilot-scale gasifier has been developed to enhance the steam-oxygen biomass gasification to generate low-tar syngas; while, a prototype hot syngas cleanup system has been designed, built and tested to further reduce the tar content and purify the syngas from the biomass gasifier for downstream applications.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, 31621, Dhahran, Saudi Arabia.
This study aims to reach a sustainable solution for waste management of medical plastics through value-added product extraction. It uses the DOE technique to examine the effect of natural zeolite and synthetic AlO and SiO as catalysts. A small lab-scale pyrolysis setup was used for medical plastic waste management treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!