We discovered that impulse-radio ultra-wideband (IR-UWB) radar could recognize cardiac motions in a non-contact fashion. Therefore, we measured the heart rate (HR) and rhythms using an IR-UWB radar sensor and evaluated the validity and reliability of the measurements in comparison to electrocardiography. The heart beats were measured in 6 healthy volunteers (18 samples) with normal sinus rhythm (NSR) and 16 patients (36 samples) with atrial fibrillation (AF) using both an IR-UWB radar sensor and electrocardiography simultaneously. The participants hold their breath for 20 seconds during the data acquisition. In subjects with NSR, there was excellent agreement of HR (intraclass correlation coefficient [ICC] 0.856), average R-R interval (ICC 0.997) and individual R-R intervals between the two methods (ICC 0.803). In subjects with AF, HR (ICC 0.871) and average R-R interval (ICC 0.925) from the radar sensor also agreed well with those from electrocardiography, though there was a small disagreement in the individual R-R intervals between the two methods (ICC 0.697). The rhythms computed by the signal-processing algorithm showed good agreement between the two methods (Cohen's Kappa 0.922). The IR-UWB radar sensor is precise and accurate for assessing HR and rhythms in a non-contact fashion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115337 | PMC |
http://dx.doi.org/10.1038/s41598-018-31411-8 | DOI Listing |
Sci Rep
November 2024
Missouri Institute for Defense and Energy, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
Sensors (Basel)
October 2024
Department of Maritime ICT & Mobility Research, Korea Institute of Ocean Science & Technology, 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea.
Sensors (Basel)
September 2024
Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Mental distress-induced imbalances in autonomic nervous system activities adversely affect the electrical stability of the cardiac system, with heart rate variability (HRV) identified as a related indicator. Traditional HRV measurements use electrocardiography (ECG), but impulse radio ultra-wideband (IR-UWB) radar has shown potential in HRV measurement, although it is rarely applied to psychological studies. This study aimed to assess early high levels of mental distress using HRV indices obtained using radar through modified signal processing tailored to reduce phase noise and improve positional accuracy.
View Article and Find Full Text PDFSensors (Basel)
August 2024
Department of Electrical Engineering, National Yunlin University of Science and Technology, Yunlin County 64002, Taiwan.
This paper presents a real-time and non-contact dual-mode embedded impulse-radio (IR) ultra-wideband (UWB) radar system designed for microwave imaging and vital sign applications. The system is fully customized and composed of three main components, an RF front-end transmission block, an analog signal processing (ASP) block, and a digital processing block, which are integrated in an embedded system. The ASP block enables dual-path receiving for image construction and vital sign detection, while the digital part deals with the inverse scattering and direct current (DC) offset issues.
View Article and Find Full Text PDFSci Rep
August 2024
Division of Cardiology, Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!