Updates on Old and Weary Haematopoiesis.

Int J Mol Sci

Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, 9019 Tromsø, Norway.

Published: August 2018

Blood formation, or haematopoiesis, originates from haematopoietic stem cells (HSCs), whose functions and maintenance are regulated in both cell- and cell non-autonomous ways. The surroundings of HSCs in the bone marrow create a specific niche or microenvironment where HSCs nest that allows them to retain their unique characteristics and respond rapidly to external stimuli. Ageing is accompanied by reduced regenerative capacity of the organism affecting all systems, due to the progressive decline of stem cell functions. This includes blood and HSCs, which contributes to age-related haematological disorders, anaemia, and immunosenescence, among others. Furthermore, chronological ageing is characterised by myeloid and platelet HSC skewing, inflammageing, and expanded clonal haematopoiesis, which may be the result of the accumulation of preleukaemic lesions in HSCs. Intriguingly, haematological malignancies such as acute myeloid leukaemia have a high incidence among elderly patients, yet not all individuals with clonal haematopoiesis develop leukaemias. Here, we discuss recent work on these aspects, their potential underlying molecular mechanisms, and the first cues linking age-related changes in the HSC niche to poor HSC maintenance. Future work is needed for a better understanding of haematopoiesis during ageing. This field may open new avenues for HSC rejuvenation and therapeutic strategies in the elderly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163425PMC
http://dx.doi.org/10.3390/ijms19092567DOI Listing

Publication Analysis

Top Keywords

clonal haematopoiesis
8
haematopoiesis
5
hscs
5
updates weary
4
weary haematopoiesis
4
haematopoiesis blood
4
blood formation
4
formation haematopoiesis
4
haematopoiesis originates
4
originates haematopoietic
4

Similar Publications

Leukemia-driving mutations are thought to arise in hematopoietic stem cells (HSC), yet the natural history of their spread is poorly understood. We genetically induced mutations within endogenous murine HSC and traced them in unmanipulated animals. In contrast to mutations associated with clonal hematopoiesis (such as Tet2 deletion), the leukemogenic KrasG12D mutation dramatically accelerated HSC contribution to all hematopoietic lineages.

View Article and Find Full Text PDF

Donor blood saves lives, yet the potential impact of recurrent large-volume phlebotomy on donor health and hematopoietic stem cells (HSCs) remains largely unexplored. In our study, we conducted a comprehensive screening of 217 older male volunteer donors with a history of extensive blood donation (>100 life-time donations) to investigate the phenomenon of clonal hematopoiesis (CH). No significant difference in the overall incidence of CH was found in frequent donors (FD) compared to sporadic donors (<10 life-time donations, 212 donors).

View Article and Find Full Text PDF

Ten-Eleven Translocation-2 (TET2) mutations drive the expansion of mutant hematopoietic stem cells (HSCs) in clonal hematopoiesis (CH). However, the precise mechanisms by which TET2 mutations confer a competitive advantage to HSCs remain unclear. Here, through an epigenetic drug screen, we discover that inhibition of disruptor of telomeric silencing 1-like (DOT1L), a H3K79 methyltransferase, selectively reduces the fitness of Tet2 knockout (Tet2) hematopoietic stem and progenitor cells (HSPCs).

View Article and Find Full Text PDF

Clonal haematopoiesis of indeterminate potential: an emerging risk factor for type 2 diabetes and related complications.

Diabetologia

March 2025

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.

The accumulation of acquired somatic mutations is a natural consequence of ageing, but the pathophysiological implications of these mutations beyond cancer are only beginning to be understood. Most somatic mutations are functionally neutral, but a few may confer a competitive advantage to a stem cell, driving its clonal expansion. When such a mutation arises in haematopoietic stem cells, it leads to clonal haematopoiesis, in which a significant proportion of blood cells originate from the mutant stem cell and share the same mutation.

View Article and Find Full Text PDF

Aims: Clonal haematopoiesis (CH) is recognized as a significant risk factor for various non-haematologic conditions, including cardiovascular diseases. However, recent studies examining its relationship with heart failure (HF) have reported conflicting findings. To address these inconsistencies, the present meta-analysis aimed to evaluate the association of CH with the incidence and clinical outcomes of HF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!