Strong signaling cascades derived from upregulation and overexpression of growth factors such as the EGF-family (epidermal growth factors) have been crucially related to cancer pathogenesis. Gene silencing techniques to modulate the expression of oncogenes and tumor suppresor genes are a strategy that shows great promise for cancer management but still faces some limitations in the design of biocompatible and effective vectors. In this study, we synthesized, by reversible addition-fragmentation chain transfer (RAFT) polymerization, several acid degradable galactose-based hyperbranched cationic polymers with varying molecular weights (10 to 20 kDa) and compositions with 2-lactobioamidoethyl methacrylamide [LAEMA] and 2-aminoethyl methacrylamide hydrochloride [AEMA] at different ratios (2.0, 1.0, and 0.5). These polymers were then evaluated for their ability to enhance Epidermal Growth Factor Receptor (EGFR) knockdown in cervical carcinoma. All the polymer constructs have enhanced capabilities to condensate siRNA (small interfering RNA), showing low toxicity at higher LAEMA:AEMA ratios (1.0 and 2.0). Western blot assays were conducted to quantify the EGFR expression of each treatment group demonstrating superior gene knockdown efficiency for the polymers having a LAEMA:AEMA ratio of 2.0 than the lower ratio counterparts; while maintaining low toxicity levels. Gene silencing of EGFR of up to 60% was achieved with acid degradable polymers having 10 kDa molecular weight and a LAEMA:AEMA ratio of 2.0. The superior stability of the polyplexes under physiological conditions and the low cytotoxicity observed in the 48 h post-transfection demonstrated the high potential of these acid degradable galactose-based hyperbranched cationic polymers for EGFR silencing treatment applications at the clinical level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.8b01066 | DOI Listing |
Curr Neuropharmacol
January 2025
Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Str, 02-106 Warsaw, Poland.
The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.
View Article and Find Full Text PDFMol Nutr Food Res
January 2025
2nd Abdominal Surgery Department, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China.
This study investigated the protective effects of the dietary polyphenol vanillic acid (VA) on dextran sulfate sodium-induced acute ulcerative colitis (UC) in mice, focusing on its impact on the gut microbiota and inflammatory responses. VA was supplemented following dextran sulfate sodium administration, and key indicators, including body weight, disease activity index, colon length, spleen index, and inflammatory markers, were assessed. VA supplementation significantly alleviated UC symptoms, preserved intestinal barrier integrity, and reduced pro-inflammatory cytokine levels.
View Article and Find Full Text PDFChem Res Toxicol
January 2025
Collaborations Pharmaceuticals, Inc., 1730 Varsity Drivef, Suite 360, Raleigh, North Carolina 27606-5228, United States.
We have assessed the human liver microsomal (HLM) metabolism of the chemical warfare nerve agents' sarin (GB), cyclosarin (GF), and the Novichok agents A-230 and A-232. In HLM, GB showed drastically decreased stability ( = 1.4 h).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
This study has developed a pressure sensor array based on four functionalized DNA-nanoenzymes with catalase-like activity for multiple detections of foodborne pathogens through a portable pressure manometer. Benefiting from functionalization of 4-mercaptophenylboronic acid and β-mercaptoethylamine, the diversity of nonspecific interactions between four DNA-nanoenzymes and each of the nine bacteria leads to differences in pressure response patterns by catalyzing HO to generate exclusive "fingerprints". As effective statistical tools for processing multivariate data, principal component analysis and hierarchical clustering analysis are employed to identify nine foodborne pathogens by analyzing pressure response patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!