A Membrane Potential- and Calpain-Dependent Reversal of Caspase-1 Inhibition Regulates Canonical NLRP3 Inflammasome.

Cell Rep

Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China; Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada. Electronic address:

Published: August 2018

The NLRP3 inflammasome senses a range of cellular disturbances, although no consensus exists regarding a common mechanism. Canonical NLRP3 activation is blocked by high extracellular K, regardless of the activating signal. We report here that canonical NLRP3 activation leads to Ca flux and increased calpain activity. Activated calpain releases a pool of Caspase-1 sequestered by the cytoskeleton to regulate NLRP3 activation. Using electrophysiological recording, we found that resting-state eukaryotic membrane potential (MP) is required for this calpain activity, and depolarization by high extracellular K or artificial hyperpolarization results in the inhibition of calpain. Therefore, the MP/Ca/calpain/Caspase-1 axis acts as an independent regulatory mechanism for NLRP3 activity. This finding provides mechanistic insight into high K-mediated inhibition of NLRP3 activation, and it offers an alternative model of NLRP3 inflammasome activation that does not involve K efflux.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201321PMC
http://dx.doi.org/10.1016/j.celrep.2018.07.098DOI Listing

Publication Analysis

Top Keywords

nlrp3 activation
16
canonical nlrp3
12
nlrp3 inflammasome
12
nlrp3
8
high extracellular
8
calpain activity
8
activation
5
membrane potential-
4
potential- calpain-dependent
4
calpain-dependent reversal
4

Similar Publications

Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis.

Inflammopharmacology

January 2025

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.

Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels.

View Article and Find Full Text PDF

Background & Aims: The role of infiltrating neutrophils in hepatocellular carcinoma (HCC) is modulated by cellular metabolism, specifically lipid homeostasis. Throughout the progression of HCC, alterations in lipid metabolism are intricately linked with regulation of neutrophil function and the release of neutrophil extracellular traps (NETs). However, how much the protumor effect of a high-fat diet (HFD) depends on NETs and the potential interplay between NETs and other leukocytes in HCC remains uncertain.

View Article and Find Full Text PDF

Ulcerative colitis (UC), a persistent immune-mediated disorder lacking effective treatment, is distinguished by gut microbiota dysbiosis, abnormal activation of the NLRP3 inflammasome pathway, and apoptosis. Despite growing attention to these factors, understanding their significance in UC pathogenesis remains a challenge. The present study explores the potential therapeutic impact of (Bc) spores in a murine UC model induced by drinking 4 % (w/v) dextran sulfate sodium (DSS) in C57BL/6 mice.

View Article and Find Full Text PDF

Chitosan, a biodegradable and biocompatible natural polymer composed of β-(1-4)-linked -acetyl glucosamine (GlcNAc) and d-glucosamine (GlcN) and derived from crustacean shells, has been widely studied for various biomedical applications, including drug delivery, cartilage repair, wound healing, and tissue engineering, because of its unique physicochemical properties. One of the most promising areas of research is the investigation of the immunomodulatory properties of chitosan, since the biopolymer has been shown to modulate the maturation, activation, cytokine production, and polarization of dendritic cells and macrophages, two key immune cells involved in the initiation and regulation of innate and adaptive immune responses, leading to enhanced immune responses. Several signaling pathways, including the cGAS-STING, STAT-1, and NLRP3 inflammasomes, are involved in chitosan-induced immunomodulation.

View Article and Find Full Text PDF

Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!