This paper assesses the extent to which patent renewal data is associated with government funding in a university context by focusing on the relationship between the funded patentees and renewal decisions of their patents. The aim of this paper is to show whether receiving funding from government contributes to high-value patents as measured by the patent renewal decisions made by their owners. Our observations of academic nanotechnology patents in Canada discovered a positive relationship between funded researchers and the rate of patent renewal after 4 years. Further analysis is also undertaken into the relative impact on patent renewal after 8 years and 12 years. Our results suggest that the length of patent renewal in numbers of years can be related to levels of government funding received by their inventors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114791 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202643 | PLOS |
Mol Metab
January 2025
Section of Endocrinology and Investigative Medicine, Imperial College London, United Kingdom. Electronic address:
Objectives: There is renewed interest in targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) for treatment of obesity and type 2 diabetes. G-protein coupled receptor desensitisation is suggested to reduce the long-term efficacy of glucagon-like-peptide 1 receptor (GLP-1R) agonists and may similarly affect the efficacy of GIPR agonists. We explored the extent of pancreatic GIPR functional desensitisation with sustained agonist exposure.
View Article and Find Full Text PDFCell Stem Cell
January 2025
Carpenter Consulting Corporation, Washington, USA. Electronic address:
Since the first derivation of human pluripotent stem cells (hPSCs) 27 years ago, technologies to control their differentiation and manufacturing have advanced immensely, enabling increasing numbers of clinical trials with hPSC-derived products. Here, we revew the landscape of interventional hPSC trials worldwide, highlighting available data on clinical safety and efficacy. As of December 2024, we identify 116 clinical trials with regulatory approval, testing 83 hPSC products.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
A balance between stem cell self-renewal and differentiation is required to maintain concurrent proliferation and cellular diversification in organoids; however, this has proven difficult in homogeneous cultures devoid of in vivo spatial niche gradients for adult stem cell-derived organoids. In this study, we leverage a combination of small molecule pathway modulators to enhance the stemness of organoid stem cells, thereby amplifying their differentiation potential and subsequently increasing cellular diversity within human intestinal organoids without the need for artificial spatial or temporal signaling gradients. Moreover, we demonstrate that this balance between self-renewal and differentiation can be effectively and reversibly shifted from secretory cell differentiation to the enterocyte lineage with enhanced proliferation using BET inhibitors, or unidirectional differentiation towards specific intestinal cell types by manipulating in vivo niche signals such as Wnt, Notch, and BMP.
View Article and Find Full Text PDFStem Cell Reports
December 2024
Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA. Electronic address:
It is widely recognized that the glycocalyx has significant implications in regulating the self-renewal and differentiation of adult stem cells; however, its composition remains poorly understood. Here, we show that the fucose-binding Aleuria aurantia lectin (AAL) binds differentially to basal cells in the stratified epithelium of the human limbus, hair follicle epithelium, and meibomian gland duct. Using fluorescence-activated cell sorting in combination with single-cell transcriptomics, we find that most epithelial progenitor cells and melanocytes in the limbus display low AAL staining (AAL) on their cell surface, an attribute that is gradually lost in epithelial cells as they differentiate into mature corneal cells.
View Article and Find Full Text PDFStem cell research is currently undergoing a promising transformation from primarily basic research to increasing emphasis on translation and clinical trials. To reach patients, however, stem cell treatments need to be not only technically but also economically viable. In this commentry we present insights into emerging pricing models that may help ensure access to advanced and expensive treatments like stem cell therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!