The demonstrated role of PKC in  mediating amphetamine-stimulated dopamine efflux, which regulates amphetamine-induced dopamine transporter trafficking and activity, has promoted the research use of the selective, reversible PKC inhibitor (9 S)-9-[(dimethylamino)methyl]-6,7,10,11-tetrahydro-9 H,18 H-5,21:12,17-dimethenodibenzo[ e,k]pyrrolo[3,4- h][1,4,13]oxadiazacyclohexadecine-18,20(19 H)-dione, ruboxistaurin. Despite the interest in development of ruboxistaurin as the mesylate monohydrate (Arxxant) for the treatment of diabetic retinopathy, macular edema, and nephoropathy, several crucial details in physicochemical characterization were erroneous or missing. This report describes the synthesis and full characterization of ruboxistaurin free base (as a monohydrate), including X-ray crystallography to confirm the absolute configuration, and of the mesylate salt, isolated as a hydrate containing 1.5 mol of water per mole.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.8b00196DOI Listing

Publication Analysis

Top Keywords

selective reversible
8
reversible pkc
8
pkc inhibitor
8
inhibitor s-9-[dimethylaminomethyl]-671011-tetrahydro-9
8
s-9-[dimethylaminomethyl]-671011-tetrahydro-9 h18
8
h18 h-5211217-dimethenodibenzo[
8
h-5211217-dimethenodibenzo[ ek]pyrrolo[34-
8
ek]pyrrolo[34- h][1413]oxadiazacyclohexadecine-182019
8
h][1413]oxadiazacyclohexadecine-182019 h-dione
8
h-dione ruboxistaurin
8

Similar Publications

Background: Orexin neuropeptides help regulate sleep/wake states, respiration, and pain. However, their potential role in regulating breathing, particularly in perioperative settings, is not well understood. TAK-925 (danavorexton), a novel, orexin receptor 2-selective agonist, directly activates neurons associated with respiratory control in the brain and improves respiratory parameters in rodents undergoing fentanyl-induced sedation.

View Article and Find Full Text PDF

Viedma deracemization mechanisms in self-assembly processes.

Phys Chem Chem Phys

January 2025

Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.

Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis.

View Article and Find Full Text PDF

We demonstrate the application of mechanochemistry in the synthesis of indolone-based photoswitches (hemiindigos, hemithioindigos, and oxindoles) via Knoevenagel condensation reactions. Utilizing ball-milling and an organic base (piperidine) acting as catalyst and solvent for liquid assisted grinding (LAG) conditions, we achieve rapid, solvent-free transformations, obtaining a set of known and previously unreported photoswitches, including highly functional amino acid-based photoswitches, multichromophoric derivatives and photoswitchable cavitands based on resorcin[4]arenes. The reaction under mechanochemical conditions gives moderate-to-high yields and is highly stereoselective leading to Z-isomers of hemiindigos and hemithioindigos and E-isomers of oxindoles.

View Article and Find Full Text PDF

Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.

View Article and Find Full Text PDF

Assessing the impact of different solvents in the bacterial reverse mutation test.

Environ Mol Mutagen

January 2025

Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India.

The bacterial reverse mutation test is essential for identifying the mutagenic potential of chemicals. The solubility of the test substance is vital for achieving the recommended assay concentration. Preferred solvents like dimethyl sulfoxide and water are chosen for their compatibility and historical data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!