Enhanced mechanical properties of Q-carbon nanocomposites by nanosecond pulsed laser annealing.

Nanotechnology

Department of Materials Science and Engineering, Centennial Campus North Carolina State University, Raleigh, NC 27695-7907, United States of America.

Published: November 2018

Q-carbon is a metastable phase of carbon formed by melting and subsequently quenching amorphous carbon films by a nanosecond laser in a super undercooled state. As Q-carbon is a material harder than diamond, it makes an excellent reinforcing component inside the softer matrix of a composite coating. In this report, we present a single-step strategy to fabricate adherent coatings of hard and lubricating Q-carbon nanocomposites. These nanocomposites consist of densely-packed sp -rich Q-carbon (82% sp ), and sp -rich α-carbon (40% sp ) amorphous phases. The nanoindentation tests show that the Q-carbon nanocomposites exhibit a hardness of 67 GPa (Young's modulus ∼ 840 GPa) in contrast to the soft α-carbon (hardness ∼ 18 GPa). The high hardness of Q-carbon nanocomposites results in 0.16 energy dispersion coefficient, in comparison with 0.74 for α-carbon. The soft α-carbon phase provides lubrication, resulting in low friction and wear coefficients of 0.09 and 1 × 10, respectively, against the diamond tip. The nanoscale dispersion of hard Q-carbon and soft α-carbon phases in the Q-carbon nanocomposites enhances the toughness of the coatings. We present detailed structure-property correlations to understand enhancement in the mechanical properties of Q-carbon nanocomposites. This work provides insights into the characteristics of Q-carbon nanocomposites and advances carbon-based superhard materials for longer lasting protective coatings and related applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aadd75DOI Listing

Publication Analysis

Top Keywords

q-carbon nanocomposites
28
soft α-carbon
12
q-carbon
11
mechanical properties
8
properties q-carbon
8
nanocomposites
8
α-carbon
5
enhanced mechanical
4
nanocomposites nanosecond
4
nanosecond pulsed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!