In the absence of sensory information, we can generate meaningful images and sounds from representations in memory. However, it remains unclear which neural systems underpin this process and whether tasks requiring the top-down generation of different kinds of features recruit similar or different neural networks. We asked people to internally generate the visual and auditory features of objects, either in isolation (car, dog) or in specific and complex meaning-based contexts (car/dog race). Using an fMRI decoding approach, in conjunction with functional connectivity analysis, we examined the role of auditory/visual cortex and transmodal brain regions. Conceptual retrieval in the absence of external input recruited sensory and transmodal cortex. The response in transmodal regions-including anterior middle temporal gyrus-was of equal magnitude for visual and auditory features yet nevertheless captured modality information in the pattern of response across voxels. In contrast, sensory regions showed greater activation for modality-relevant features in imagination (even when external inputs did not differ). These data are consistent with the view that transmodal regions support internally generated experiences and that they play a role in integrating perceptual features encoded in memory.

Download full-text PDF

Source
http://dx.doi.org/10.1162/jocn_a_01330DOI Listing

Publication Analysis

Top Keywords

transmodal brain
8
brain regions
8
retrieval absence
8
visual auditory
8
auditory features
8
transmodal
5
features
5
imagining sounds
4
sounds images
4
images decoding
4

Similar Publications

Functional connectivity gradients and neurotransmitter maps among patients with mild cognitive impairment and depression symptoms.

J Psychiatry Neurosci

January 2025

From the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China (X. Liu, Chen, K. Liu, Yan, Wu); the Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang Province, China (X. Liu, Chen, K. Liu, Yan); the Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, China (Chen); the Hebei General Hospital, Shijiazhuang, Hebei 050050, China (Cheng); the Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China (Wei, Hou, Li, Guo); the Zhoushan Second People's Hospital, Zhoushan, Zhejiang 316000, China (Guo)

Background: Both depressive symptoms and neurotransmitter changes affect the characteristics of functional brain networks in clinical patients. We sought to explore how brain functional grading is organized among patients with mild cognitive impairment and depressive symptoms (D-MCI) and whether changes in brain organization are related to neurotransmitter distribution.

Methods: Using 3 T magnetic resonance imaging (MRI) we acquired functional MRI (fMRI) data from patients with D-MCI, patients with mild cognitive impairment without depression (nD-MCI), and healthy controls.

View Article and Find Full Text PDF

Background And Hypothesis: Respective abnormal structural connectivity (SC) and functional connectivity (FC) have been reported in individuals with schizophrenia. However, transmodal associations between SC and FC following antipsychotic treatment, especially in female schizophrenia, remain unclear. We hypothesized that increased SC-FC coupling may be found in female schizophrenia, and could be normalized after antipsychotic treatment.

View Article and Find Full Text PDF

Sensorimotor learning is supported by multiple competing processes that operate concurrently, making it a challenge to elucidate their neural underpinnings. Here, using human functional MRI, we identify 3 distinct axes of connectivity between the motor cortex and other brain regions during sensorimotor adaptation. These 3 axes uniquely correspond to subjects' degree of implicit learning, performance errors and explicit strategy use, and involve different brain networks situated at increasing levels of the cortical hierarchy.

View Article and Find Full Text PDF

Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology () factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures.

View Article and Find Full Text PDF

Sensory information mainly travels along a hierarchy spanning unimodal to transmodal regions, forming multisensory integrative representations crucial for higher-order cognitive functions. Here, we develop an fMRI based two-dimensional framework to characterize sensory integration based on the anchoring role of the primary cortex in the organization of sensory processing. Sensory magnitude captures the percentage of variance explained by three primary sensory signals and decreases as the hierarchy ascends, exhibiting strong similarity to the known hierarchy and high stability across different conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!