AI Article Synopsis

Article Abstract

Repeated exposure to the opioid agonist, oxycodone, can lead to addiction. Here, we sought to identify potential neurobiological consequences of withdrawal from escalated and non-escalated oxycodone self-administration in rats. To reach these goals, we used short-access (ShA) (3 h) and long-access (LgA) (9 h) exposure to oxycodone self-administration followed by protracted forced abstinence. After 31 days of withdrawal, we quantified mRNA and protein levels of opioid receptors in the rat dorsal striatum and hippocampus. Rats in the LgA, but not the ShA, group exhibited escalation of oxycodone SA, with distinction of two behavioral phenotypes of relatively lower (LgA-L) and higher (LgA-H) oxycodone takers. Both LgA, but not ShA, phenotypes showed time-dependent increases in oxycodone seeking during the 31 days of forced abstinence. Rats from both LgA-L and LgA-H groups also exhibited decreased levels of striatal mu opioid receptor protein levels in comparison to saline and ShA rats. In contrast, mu opioid receptor mRNA expression was increased in the dorsal striatum of LgA-H rats. Moreover, hippocampal mu and kappa receptor protein levels were both increased in the LgA-H phenotype. Nevertheless, hippocampal mu receptor mRNA levels were decreased in the two LgA groups whereas kappa receptor mRNA expression was decreased in ShA and LgA oxycodone groups. Decreases in striatal mu opioid receptor protein expression in the LgA rats may serve as substrates for relapse to drug seeking because these changes occur in rats that showed incubation of oxycodone seeking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477015PMC
http://dx.doi.org/10.1007/s12035-018-1318-zDOI Listing

Publication Analysis

Top Keywords

dorsal striatum
12
oxycodone self-administration
12
protein levels
12
opioid receptor
12
receptor protein
12
receptor mrna
12
oxycodone
9
rat dorsal
8
striatum hippocampus
8
drug seeking
8

Similar Publications

Sex Differences in the Striatal Contributions to Longitudinal Fine Motor Development in Autistic Children.

Biol Psychiatry

January 2025

MIND Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA.

Background: Fine motor challenges are prevalent in autistic populations. However, little is known about their neurobiological underpinnings or how their related neural mechanisms are influenced by sex. The dorsal striatum, comprised of the caudate nucleus and putamen, is associated with motor learning and control and may hold critical information.

View Article and Find Full Text PDF

Effects of chronic ethanol exposure on dorsal medial striatal neurons receiving convergent inputs from the orbitofrontal cortex and basolateral amygdala.

Neuropharmacology

January 2025

Department of Neuroscience; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

Alcohol use disorder is associated with altered function of cortical-amygdala-striatal circuits such as the orbitofrontal cortex (OFC), basolateral amygdala (BLA) and their connections to the dorsal medial striatum (DMS) shown to be involved in goal-directed actions. Using retrobead tracing, we previously reported enhanced excitability of DMS-projecting OFC neurons in mice following 3-to-7-day withdrawal from chronic intermittent ethanol (CIE) exposure. In the same animals, spiking of DMS-projecting BLA neurons was decreased at 3-days post-withdrawal followed by an increase in firing at 7- and 14-days.

View Article and Find Full Text PDF

Addiction to psychostimulants, including cocaine, causes widespread morbidity and mortality and is a major threat to global public health. Currently, no pharmacotherapies can successfully treat psychostimulant addiction. The neuroactive effects of cocaine and other psychostimulants have been studied extensively with respect to their modulation of monoamine systems (particularly dopamine); effects on neuropeptide systems have received less attention.

View Article and Find Full Text PDF

Prenatal stress alters mouse offspring dorsal striatal development and placental function in sex-specific ways.

J Psychiatr Res

January 2025

Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA. Electronic address:

Prenatal stress is a risk factor for neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). However, how early stress modification of brain development contributes to this pathophysiology is poorly understood. Ventral forebrain regions such as dorsal striatum are of particular interest: dorsal striatum modulates movement and cognition, is altered in NDDs, and has a primarily GABAergic population.

View Article and Find Full Text PDF

The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!