The molecular carbon nanoring, cycloparaphenylene (CPP), is fascinating as a new class of carbonaceous porous solids with the uniform structure of an all-benzene surface. We explored the feasibility of [12]CPP as a carbon-based porous material and uncovered its unique adsorption properties due to its shape and highly nonpolar surface. Unlike other porous carbon solids, [12]CPP shows stepwise adsorption behaviors sensitive to the functionalities of the guest molecules. powder X-ray diffraction and infrared spectra provided insights into how [12]CPP accommodates the guest molecules with structural deformation retaining its structural periodicity during the whole adsorption process, which exemplifies that this molecular nanoring represents an unprecedented carbon-based soft porous solid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013928PMC
http://dx.doi.org/10.1039/c6sc00092dDOI Listing

Publication Analysis

Top Keywords

porous carbon
8
guest molecules
8
porous
5
cycloparaphenylene molecular
4
molecular porous
4
carbon solid
4
solid uniform
4
uniform pores
4
pores exhibiting
4
exhibiting adsorption-induced
4

Similar Publications

Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.

View Article and Find Full Text PDF

The retention behavior in supercritical fluid chromatography (SFC) remains a complex and poorly understood phenomenon despite the development of various models to explain retention mechanisms. This study aims to deepen the understanding of retention by investigating three distinct stationary phases: high-strength silica octadecyl (HSS C18 SB), charged surface hybrid pentafluorophenyl (CSH PFP), and porous graphitic carbon (PGC) as a nonsilica-based phase. Three mobile phase compositions, i.

View Article and Find Full Text PDF

The development of an effective and rapid method for healing the skin is of crucial importance. In this study, we prepared a porous scaffold made of polycaprolactone (PCL) and carbon quantum dots (CQDs), Fe, and Chitosan (Cs) as the scaffold core to cover the skin. Then evaluated antibacterial, biocompatibility, and wound healing properties as well as the expression of genes effective in wound healing.

View Article and Find Full Text PDF

A novel composite containing CoS and nitrogen-doped amorphous porous carbon (NAPC), denoted as CoS@NAPC, was successfully synthesized from a mixture of cobalt-based ZIF-12 and sulfur through one-pot pyrolysis. The morphology and microstructure of the composites are evaluated with appropriate spectroscopic techniques. CoS@NAPC was used to modify the glassy carbon electrode (GCE) to detect Nilotinib.

View Article and Find Full Text PDF

In the long and complex process of geological evolution, the rise of the Himalayan movement and the strong Quaternary glacial movement 400,000 years ago have shaped the highly distinctive travertine landform landscape of Huanglong, China. The overflow of karst water in the high travertine layer has formed magnificent waterfalls and wonderful karst caves as well as the world's largest open-air travertine beaches and pools. The unique travertine landscape has entered the public's vision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!