The level of tumor-infiltrating lymphocytes and presence of tertiary lymphoid structures are significant prognostic and predictive factors in primary breast cancer. However, the understanding about differences in tumor-infiltrating lymphocytes and tertiary lymphoid structures at various metastatic sites or between primary breast tumors and metastatic sites is limited. A total of 335 cases of metastatic breast cancer from four metastatic sites (lung, liver, brain, and ovary) were included. We analyzed the percentages of tumor-infiltrating lymphocytes and presence of tertiary lymphoid structures in the primary and metastatic sites. The mean level of tumor-infiltrating lymphocytes in the lung metastases was higher than in the liver, brain, ovary, and matched primary tumors, while metastatic tumors of the liver and brain showed lower levels of tumor-infiltrating lymphocytes than primary tumors. Tertiary lymphoid structures were only found in the lung and liver, and in cases of brain metastases the change of tertiary lymphoid structures from present to absent significantly affected the level of tumor-infiltrating lymphocytes in metastases compared with that in matched primary tumors. Patients with a lower histological grade, hormone receptor positivity in primary tumors and metastases, a lower level of tumor-infiltrating lymphocytes and absence of tertiary lymphoid structures in primary tumors, a higher level of tumor-infiltrating lymphocytes and presence of tertiary lymphoid structures in metastases, and lung metastases showed significantly better overall survival. Our results showed that metastatic breast tumors in the lung had more tumor-infiltrating lymphocytes than did tumors at other sites and matched primary tumors. In addition, the presence of tertiary lymphoid structures in metastatic sites is a critical factor for the level of tumor-infiltrating lymphocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41379-018-0113-8 | DOI Listing |
Viruses
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA.
Oncolytic virotherapy has shown great promise in mediating targeted tumor destruction through tumor-selective replication and induction of anti-tumor immunity; however, obstacles remain for virus candidates to reach the clinic. These include avoiding neutralizing antibodies, preventing stimulation of the adaptive immune response during intravenous administration, and inducing sufficient apoptosis and immune activation so that the body's defense can work to eradicate systemic disease. We have developed a co-formulation of oncolytic viruses (OVs) with Imagent lipid-encapsulated, perfluorocarbon microbubbles (MBs) to protect the OVs from the innate and adaptive immune system.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
In 2024, the United States was projected to experience 2 million new cancer diagnoses and approximately 611,720 cancer-related deaths, reflecting a broader global trend in which cancer cases are anticipated to exceed 35 million by 2050. This increasing burden highlights ongoing challenges in cancer treatment despite significant advances that have reduced cancer mortality by 31% since 1991. Key obstacles include the disease's inherent heterogeneity and complexity, such as treatment resistance, cancer stem cells, and the multifaceted tumor microenvironment (TME).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany.
Head and neck squamous cell carcinomas (HNSCC) have an overall poor prognosis, especially in locally advanced and metastatic stages. In most cases, multimodal therapeutic approaches are required and show only limited cure rates with a high risk of tumor recurrence. Anti-PD-1 antibody treatment was recently approved for recurrent and metastatic cases but to date, response rates remain lower than 25%.
View Article and Find Full Text PDFJ Clin Med
December 2024
Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health-DSCTV, University of Padova, 35128 Padova, Italy.
: The tumour inflammatory microenvironment (TIME) reflects a selective activation of the central immune system (IS), particularly T-cells expansion, which leads to immune cells migrating to the target, such as lung cancer, via the bloodstream and lymphatic vessels. In this study, the aim is to investigate whether the distribution of peripheral blood cells varies based on the immune status of patients with lung adenocarcinoma. : This is a single-center retrospective study conducted in the Thoracic Surgery Unit of the University of Padua (Italy) between 1 January 2016 and 1 April 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!