Colorimetric Aptasensor of Vitamin D3: A Novel Approach to Eliminate Residual Adhesion between Aptamers and Gold Nanoparticles.

Sci Rep

National Center for Irradiation Technology, Nuclear Science Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia.

Published: August 2018

Colorimetric aptasensors based on gold nanoparticles (AuNPs) commonly feature ssDNA probes nonspecifically adsorbed to surface gold particles. A major limitation of this versatile method is the incomplete dissociation of the adsorbed nontarget binding segments of the aptamer sequence upon target binding. This results in weak or nonexistent sensor performance by preventing the particles from aggregating when the optimized salt concentration is added. Rather than removing the nonbinding nucleotides flanking the binding region of the aptamer, proposed herein is an alternative strategy, simply introducing a centrifugation and resuspension step after target recognition that eliminates residual binding between the aptamer and the surface of the particles. The performance of two different vitamin D3 (VTD3) aptamers were tested. The method enhanced the performance of the sensor that used the higher detection limit (1 µM) aptamer by fourfold. The superiority of the proposed method became apparent in a nonworking colorimetric sensor became a highly sensitive sensor with a one nanomolar detection level and excellent discrimination against potential interfering molecules including VTD2 when the centrifugation and resuspension process was implemented. The level of VTD3 in human blood was determined colorimetrically after extraction with n-hexane. The results were in agreement with those obtained by HPLC. The proposed method could be applied to aptamers targeting small molecules with no need to reprocess the SELEX-isolated sequence by knowing the binding region and removing the flanking primers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113223PMC
http://dx.doi.org/10.1038/s41598-018-31221-yDOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
binding region
8
centrifugation resuspension
8
proposed method
8
binding
5
colorimetric aptasensor
4
aptasensor vitamin
4
vitamin novel
4
novel approach
4
approach eliminate
4

Similar Publications

Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential.

View Article and Find Full Text PDF

This research focuses on the selective detection of Hg2+ ions using hybrid nanosensors composed of rhodamine building blocks linked to polyamine units of varying chain lengths to produce Rho1-Rho4, which were subsequently conjugated with thioctic acid (RT1-RT4) and attached to the surface of gold nanoparticles to create hybrid nanosensors (GRT1-GRT4) designed for detecting heavy metals. The chemical structures, purity, morphology, and chemical composition were characterized through XRD, NMR, TEM, ATR-FTIR, and mass spectrometry. These hybrid nanosensors demonstrated excellent selectivity and sensitivity in colorimetric and fluorescence responses towards Hg2+, outperforming other metal ions.

View Article and Find Full Text PDF

A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!