In this manuscript, weld pool dynamics in laser welding of various series of aluminum alloys were investigated by the in situ X-ray phase contrast imaging system. The experimental results showed that metal irradiated by laser was evaporated immediately, which generated the keyhole. Then metal surrounding the keyhole was melted gradually with the heat from keyhole. The growth rate of keyhole depth had a positive linear correlation with the total content of low boiling temperature elements (TCE), so did the keyhole depth and diameter at the stable stage. Longitudinal view area of the molten pool had a negative linear correlation with the thermal conductivity of aluminum alloy. The measured laser absorption rate had the same variation trend with the ratio of keyhole depth to diameter, and the highest absorption rate of 58% appeared in laser welding of aluminum alloy with TCE equal to 2.1%. Violent fluctuation in keyhole shape was avoided in aluminum alloy with TCE lower than 2.1%, where the surface tension and recoil pressure of metal vapor were balanced. To sum up, the effect of alloy element on weld pool dynamics in laser welding of aluminum alloys was firstly quantified in this manuscript.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113294PMC
http://dx.doi.org/10.1038/s41598-018-31350-4DOI Listing

Publication Analysis

Top Keywords

laser welding
16
weld pool
12
pool dynamics
12
dynamics laser
12
welding aluminum
12
aluminum alloys
12
keyhole depth
12
aluminum alloy
12
alloy element
8
element weld
8

Similar Publications

Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.

View Article and Find Full Text PDF

Operando X-Ray Tomoscopy of Laser Beam Welding.

Adv Sci (Weinh)

January 2025

Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

The phenomena occurring in a weld seam during advancement of a laser beam over a metallic component are still under dispute. The occurrence and evolution of porosity and the occasional blowout of melt need to be understood. Here, a recently developed X-ray tomoscopy setup is applied, providing one hundred 3D images per second to capture the temporal evolution of the melt pool in an AlSi9Cu3(Fe) die-casting while a laser beam advances.

View Article and Find Full Text PDF

In this study, the melt pool formation behavior of high-speed laser-arc hybrid welding of aluminum plates was simulated using finite element analysis (FEA). To evaluate the heat input efficiencies of the laser and arc, standalone laser or arc welding experiments were conducted using the same arc or laser processing parameters as those employed in hybrid welding. These experiments were also simulated using FEA to calibrate the laser and arc heat adsorption parameters.

View Article and Find Full Text PDF

In this study, we report, for the first time, to the best of our knowledge, on in-volume glass modifications produced by GHz bursts of femtosecond pulses. We compare three distinct methods of energy deposition in glass, i.e.

View Article and Find Full Text PDF

Large enhancement of ferroelectric properties of perovskite oxides via nitrogen incorporation.

Sci Adv

January 2025

State Key Laboratory of Advanced Welding and Joining of Materials and Structures, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.

Perovskite oxides have a wide variety of physical properties that make them promising candidates for versatile technological applications including nonvolatile memory and logic devices. Chemical tuning of those properties has been achieved, to the greatest extent, by cation-site substitution, while anion substitution is much less explored due to the difficulty in synthesizing high-quality, mixed-anion compounds. Here, nitrogen-incorporated BaTiO thin films have been synthesized by reactive pulsed-laser deposition in a nitrogen growth atmosphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!