Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigated the effects of incorporating a mixture of fructooligosaccharide (FOS) and resistant maltodextrin (RMD) at a ratio of 1:2 on body fat accumulation and fecal bacterial parameters in rats. Our results indicated that high dietary fat consumption might effectively ( < 0.05) increase body fat, but consequently inducing a significantly ( < 0.05) higher growth of and retarded growth ( < 0.05) of the spp. in the large intestine. As compared with the high fat control, an incorporation of the FOS and RMD mixture at a high dose (0.97 and 1.94 g/kg body weight, respectively) could result in a significant ( < 0.05) reduction in feed efficiency (-16%), total visceral fat (-17.4%), non-visceral fat levels (-20.3%), and total body fat (-19.2%). Furthermore, feeding the FOS and RMD mixture at a high dose was capable to counter the above undesirable impacts by reducing the count (-14.8%) and increasing the total count (134.4%) and total fecal short chain fatty acids (195.4%). A supplementation of adequate amount of FOS and RMD might confer a concreted solution to the obesity and deteriorated fecal bacteria profiles due to high fat consumption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225425 | PMC |
http://dx.doi.org/10.3390/molecules23092169 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!