Background: Hypoxic-ischemic encephalopathy is a major cause of neonatal morbidity. Therapeutic hypothermia, while beneficial, still leaves many treated infants with lifelong disabilities. Thus, adjunctive therapies, such as melatonin, are needed to provide additional neuroprotection.
Objectives: The aim of this study was to determine a range of melatonin concentrations that could result in neuroprotective synergy with hypothermia.
Methods: Hypoxia-ischemia was simulated by transient oxygen-glucose deprivation (OGD) in organotypic hippocampal slice cultures derived from neonatal rats. Cell damage was quantified by propidium iodide (PI) labeling.
Results: Melatonin reduced OGD- induced cell death in a concentration-dependent manner (1-100 μM) with an EC50 of about 25 μM. Hypothermia attenuated cell death in a time-dependent manner, with a nearly full protection upon 24-h exposure (78%) and partial protection (40%) upon 6-h exposure. When submaximal effective concentrations of melatonin (25 or 50 μM, resulting in 54 and 64% protection) were combined with 6 h of hypothermia, nearly full protection (73 and 78%, respectively; p < 0.05 and p < 0.01) was observed.
Conclusion: Melatonin acts in synergy with hypothermia in attenuating OGD-induced damage in organotypic hippocampal cultures. This reductionist approach allows the determination of a range of concentrations of melatonin capable of enhancing hypothermic neuroprotection. This information, coupled with pharmacokinetic data, will help to define the therapeutic dosage of melatonin in vivo and, ultimately, in patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000491859 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, Affiliated Hospital of Jiangnan University, 214122 Wuxi, Jiangsu, China.
Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Anesthesia, Hangzhou Plastic Surgery Hospital, 310000 Hangzhou, Zhejiang, China.
Introduction: The effects of remimazolam (Re) in combination with andrographolide (AP) on learning, memory, and motor abilities in rats following cardiopulmonary bypass (CPB) surgery were studied.
Methods: We hypothesized that the combination of Re and AP could improve postoperative cognitive dysfunction (POCD) in rats after CPB by modulating nervous system inflammation. Cognitive function was assessed using the Morris Water Maze test, and the concentrations of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!