Checkpoint inhibition in the treatment of multiple myeloma: A way to boost innate-like T cell anti-tumor function?

Mol Immunol

Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, Ghent, Belgium.

Published: September 2018

Multiple myeloma (MM) is a progressive monoclonal B cell malignancy, for which survival and progression largely relies on the crosstalk of tumor cells with the bone marrow (BM) microenvironment, inducing immune escape, angiogenesis, bone destruction and drug resistance. Despite great therapeutic advances, most of the MM patients still relapse and remain incurable. Over the past years, immunotherapy has emerged as a new field in cancer therapy. Here, the immune cells of the patients themselves are activated to target the tumor cells. In MM, several effector cells of the immune system are present in the BM microenvironment; unfortunately, they are mostly all functionally impaired. In this review, we focus on the role of innate-like T cells in MM, particularly CD1d- and MR1- restricted T cells such as respectively invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells. These cells have the capacity upon activation to rapidly release copious amounts of cytokines affecting a wide range of innate and adaptive immune responses, and could therefore play a key protective role in anti-tumor immunity. We describe recent observations with regard to functional exhaustion of iNKT and MAIT cells in MM pathology and discuss the potential application of checkpoint inhibition as an attractive target for prolonged activation of these immunomodulatory T cells in the treatment of MM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2018.08.019DOI Listing

Publication Analysis

Top Keywords

cells
11
checkpoint inhibition
8
multiple myeloma
8
tumor cells
8
mait cells
8
inhibition treatment
4
treatment multiple
4
myeloma boost
4
boost innate-like
4
innate-like cell
4

Similar Publications

Aim: This study was conducted to evaluate the in vitro effects of hydroxychloroquine (HCQ) on histone deacetylase (HDAC) enzyme activity and interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha (TNF-α) expression. HDAC enzyme activity and the expression of inflammation markers were tested, with the presence of the HDAC inhibitor valproic acid, in human primary cell cultures prepared from two different tissues.

Material And Methods: Primary cell cultures were prepared.

View Article and Find Full Text PDF

Aim: St. John\'s Wort Oil (JWO) has a sedative property and it is used traditionally for the treatment of depression, neuralgia and excitability. JWO has been shown to have anticancer activity via apoptosis in glioblastoma cells.

View Article and Find Full Text PDF

Aim: This study aims to assess the clinicopathological and prognostic significance of Tim-3, an immune checkpoint molecule, and Rel-B, an NF-κB subunit, in grade 4 diffuse glioma samples and their relationship with each other.

Material And Methods: The demographic, radiologic, prognostic, and treatment data of patients diagnosed with grade 4 diffuse glioma between 2016 and 2019 were reviewed and recorded. Tim-3 and Rel-B were applied to the paraffin-embedded tissues by immunohistochemistry method.

View Article and Find Full Text PDF

Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia.

J Biophotonics

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation.

View Article and Find Full Text PDF

3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!