Therapeutic Drug Monitoring of endoxifen as an alternative for CYP2D6 genotyping in individualizing tamoxifen therapy.

Breast

Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands; Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.

Published: December 2018

Different strategies have been proposed to individualize tamoxifen treatment in order to improve recurrence-free survival in estrogen receptor (ER)-positive breast cancer. To date, the debate remains on which strategy should be used. The objective of this viewpoint is to highlight Therapeutic Drug Monitoring of endoxifen, the active tamoxifen metabolite, as the preferred methodology compared to CYP2D6 genotyping for individualizing tamoxifen therapy for ER-positive breast cancer patients treated in the adjuvant setting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.breast.2018.08.100DOI Listing

Publication Analysis

Top Keywords

therapeutic drug
8
drug monitoring
8
monitoring endoxifen
8
cyp2d6 genotyping
8
genotyping individualizing
8
individualizing tamoxifen
8
tamoxifen therapy
8
er-positive breast
8
breast cancer
8
endoxifen alternative
4

Similar Publications

The Ataxia-telangiectasia mutated (ATM) is the most important gene for repairing the DNA in Myelodysplastic Neoplasm.

DNA Repair (Amst)

January 2025

Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil.

Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening.

View Article and Find Full Text PDF

Cystine-Modified Lignin-Copper Coordination Nanocarriers Improve the Therapeutic Efficacy of Tyrosine Kinase Inhibition via Cuproptosis.

ACS Appl Mater Interfaces

January 2025

Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China.

The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application.

View Article and Find Full Text PDF

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

Innovative Applications of Bacteria and Their Derivatives in Targeted Tumor Therapy.

ACS Nano

January 2025

Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.

Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Background: Patients receiving chiropractic spinal manipulation (CSM) for spinal pain are less likely to be prescribed opioids, and some evidence suggests that these patients have a lower risk of any type of adverse drug event. We hypothesize that adults receiving CSM for sciatica will have a reduced risk of opioid-related adverse drug events (ORADEs) over a one-year follow-up compared to matched controls not receiving CSM.

Methods: We searched a United States (US) claims-based data resource (Diamond Network, TriNetX, Inc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!