Protein-repelling adhesive resin containing calcium phosphate nanoparticles with repeated ion-recharge and re-releases.

J Dent

Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. Electronic address:

Published: November 2018

Objectives: The objectives were to develop a calcium (Ca) and phosphate (P) ion-rechargeable and protein-repellent adhesive containing nanoparticles of amorphous calcium phosphate (NACP) and 2-methacryloyloxyethyl phosphorylcholine (MPC), and investigate the MPC effects on ion recharge and re-releases for the first time.

Methods: Pyromellitic glycerol dimethacrylate and ethoxylated bisphenol-A dimethacrylate were used to fabricate adhesive PEHB. Six adhesives were tested: (1) Scotchbond (SBMP); (2) PEHB, (3) PEHB + 20%NACP; (4) PEHB + 30%NACP; (5) PEHB + 20%NACP+3%MPC; (6) PEHB + 30%NACP+3%MPC. Dentin shear bond strength, Ca/P ion release, recharge and re-release, and protein adsorption were measured. A microcosm biofilm model was tested for lactic-acid production and colony-forming units (CFU).

Results: Adding NACP + MPC did not negatively affect dentin bond strength (p > 0.1). With increasing the number of recharge/re-release cycles, the Ca/P ion re-release reached similarly higher levels (p > 0.1), indicating long-term remineralization capability. One recharge enabled the adhesives to have continued re-releases for 21 days. Incorporation of 3% MPC yielded 10-fold decrease in protein adsorption, and 1-2 log decrease in biofilm CFU.

Conclusions: The new rechargeable adhesive with MPC + 30%NACP greatly reduced protein adsorption, biofilm growth and lactic acid. Incorporation of MPC did not compromise the excellent Ca/P ion release, rechargeability, and dentin bond strength.

Clinical Significance: Novel bioactive adhesive containing MPC + NACP is promising to repel proteins and bacteria, and inhibit secondary caries at the restoration margins. The method of NACP + MPC to combine CaP-recharge and protein-repellency is applicable to the development of a new generation of materials including composites and cements to suppress oral biofilms and plaque formation and protect tooth structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2018.08.011DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
12
ca/p ion
12
protein adsorption
12
bond strength
8
ion release
8
dentin bond
8
incorporation mpc
8
protein-repelling adhesive
4
adhesive resin
4
resin calcium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!