Aim: Adaptive responses of brain parenchymal arterioles (PAs), a target for cerebral small vessel disease, to chronic cerebral hypoperfusion are largely unknown. Previous evidence suggested that transient receptor potential vanilloid 4 channels may be involved in the regulation of cerebrovascular tone. Therefore, we investigated the role of TRPV4 in adaptations of PAs in a mouse model of chronic hypoperfusion.

Methods: TRPV4 knockout ( ) and wild-type (WT) mice were subjected to unilateral common carotid artery occlusion (UCCAo) for 28 days. Function and structure of PAs ipsilateral to UCCAo were studied isolated and pressurized in an arteriograph.

Results: Basal tone of PAs was similar between WT and TRPV4 mice (22 ± 3 vs 23 ± 5%). After UCCAo, active inner diameters of PAs from WT mice were larger than control (41 ± 2 vs 26 ± 5 μm, P < 0.05) that was due to decreased tone (8 ± 2 vs 23 ± 5%, P < 0.05), increased passive inner diameters (46 ± 3 vs 34 ± 2 μm, P < 0.05), and decreased wall-to-lumen ratio (0.104 ± 0.01 vs 0.137 ± 0.01, P < 0.05). However, UCCAo did not affect vasodilation to a small- and intermediate-conductance calcium-activated potassium channel agonist NS309, the nitric oxide (NO) donor sodium nitroprusside, or constriction to a NO synthase inhibitor L-NNA. Wall thickness and distensibility in PAs from WT mice were unaffected. In TRPV4 mice, UCCAo had no effect on active inner diameters or tone and only increased passive inner diameters (53 ± 2 vs 43 ± 3 μm, P < 0.05).

Conclusion: Adaptive response of PAs to chronic cerebral hypoperfusion includes myogenic tone reduction and outward remodelling. TRPV4 channels were involved in tone reduction but not outward remodelling in response to UCCAo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380684PMC
http://dx.doi.org/10.1111/apha.13181DOI Listing

Publication Analysis

Top Keywords

transient receptor
8
receptor potential
8
channels involved
8
brain parenchymal
8
parenchymal arterioles
8
pas
5
potential vanilloid-4
4
vanilloid-4 channels
4
involved diminished
4
diminished myogenic
4

Similar Publications

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Whole-Body Physiologically Based Pharmacokinetic Modeling of GalNAc-Conjugated siRNAs.

Pharmaceutics

January 2025

Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development, Uppsala University, SE-75124 Uppsala, Sweden.

: N-acetyl-galactosamine small interfering RNAs (GalNAc-siRNA) are an emerging class of drugs due to their durable knockdown of disease-related proteins. Direct conjugation of GalNAc onto the siRNA enables targeted uptake into hepatocytes via GalNAc recognition of the Asialoglycoprotein Receptor (ASGPR). With a transient plasma exposure combined with a prolonged liver half-life, GalNAc-siRNA exhibits distinct disposition characteristics.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

Inwardly rectifying potassium (Kir) channels regulate essential physiological processes in insects and have been identified as potential targets for developing new insecticides. Flonicamid has been reported to inhibit Kir channels, disrupting the functions of salivary glands and renal tubules. However, the precise molecular target of flonicamid remains debated.

View Article and Find Full Text PDF

The Role of TRPV1/CGRP Pathway Activated by in Pathogenesis of Oral Lichen Planus.

Int J Mol Sci

January 2025

Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Mucosal Diseases, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.

The distinctive clinicopathologic characteristics of OLP indicated that both microbial dysbiosis and neurogenic inflammation may be jointly involved in its progression, and transient receptor potential vanilloid receptor-1 (TRPV1) may be a crucial element. The purpose of this study was to explore how TRPV1 mediated -induced inflammation. Meanwhile, we aimed to unravel how IL-36γ dysregulated the barrier function in oral keratinocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!