Immunoglobulin G-like bispecific antibodies with asymmetric architecture are among the most widely used bispecific antibody formats for diagnostic and therapeutic applications. The primary technical challenge for this format is how to achieve correctly paired assembly of four unique polypeptide chains. Advances in protein engineering and process development are being used to overcome these challenges and are driving a corresponding demand for sensitive analytical tools to monitor and control mispaired species. Here, we report a systematic approach for analysis and characterization of mispairing in asymmetric bispecific antibodies. This approach consists of three orthogonal components, the first of which is a liquid chromatography (LC)-mass spectrometry (MS)-based method to measure the mass of intact antibodies. This method is used for fast analysis of mispairing and requires minimal method development, which makes it an ideal choice for early-stage development. The second component is a hydrophobic interaction chromatography (HIC)-based mispairing method that is suitable for lot release testing. The HIC method is robust and quality control friendly, and offers great linearity, precision, and accuracy. The third component is a two-dimensional LC-MS method for on-line chromatographic peak identification, which not only expedites this task but also reduces the risk of undesirable modifications during conventional fraction collection. These three methods dovetail to form the foundation of a complementary toolbox for analysis and characterization of mispairing in asymmetric bispecific antibodies and provide guidance and support for process development throughout the drug development life cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284573PMC
http://dx.doi.org/10.1080/19420862.2018.1511198DOI Listing

Publication Analysis

Top Keywords

bispecific antibodies
16
analysis characterization
12
characterization mispairing
12
systematic approach
8
approach analysis
8
antibodies asymmetric
8
asymmetric architecture
8
process development
8
mispairing asymmetric
8
asymmetric bispecific
8

Similar Publications

Although there is anti-tumor efficacy of dual CTLA-4/PD-1 blockade in advanced/recurrent cervical cancer, it is unclear whether combination with chemotherapy is synergistic. In COMPASSION-16, Wu et al. demonstrated improved survival outcomes of cadolinimab plus chemotherapy compared to chemotherapy alone for first-line systemic therapy for advanced/recurrent cervical cancer, suggesting a potential role of bispecific CTLA-4/PD-1 inhibitors in the frontline setting.

View Article and Find Full Text PDF

Bispecific Antibodies for Lymphoid Malignancy Treatment.

Cancers (Basel)

December 2024

Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy.

Backgroud: The introduction of highly active immunotherapies has changed the outcome of B-cell non-Hodgkin lymphomas (B-NHLs) in the last two decades. Since then, important progress has been shown using newer and more active immunotherapies, including chimeric antigen receptor T-cell therapy (CAR-T), conjugated monoclonal antibodies, and bispecific antobodies, which currently plays a significant role in the treatment of diffuse large B-cell (DLBCL), follicular (FL), and mantle cell (MCL) lymphoma.

Purpose: In this review, we provide an updated overview of recently completed and ongoing BsAb trials in patients with relapsed/refractory(R/R) B-NHL and Hodgkin's lymphoma, including single-agent results, emerging combinations, safety data, and novel constructs.

View Article and Find Full Text PDF

Immune cell engagers are molecular agents, usually antibody-based constructs, engineered to recruit immune cells against cancer cells and kill them. They are versatile and powerful tools for cancer immunotherapy. Despite the multiplication of engagers tested and accepted in the clinic, how molecular and cellular parameters influence their actions is poorly understood.

View Article and Find Full Text PDF

Risk of infections in bispecific antibody therapy for multiple myeloma: a comprehensive review of literature.

Hematology

December 2025

Clinical Pharmacy Department, King Fahad Medical City, Riyadh, RH, Saudi Arabia.

Multiple Myeloma (MM) is a malignancy characterized by abnormal production of monoclonal immunoglobulins in plasma cells. Bispecific antibodies have emerged as a significant advancement in MM treatment, offering high effectiveness and specificity by targeting different antigens such as BCMA, CD38, and FcRH5. However, the risk of infection poses a major challenge in MM patients, which is thought to be influenced by various factors.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) remains the mainstay of treatment for adults with high-risk acute lymphoblastic leukemia (ALL). Due to the crucial role of measurable residual disease (MRD) before Allo-HSCT in predicting relapse and the promising anti-leukemia effect of blinatumomab, we documented a short-course, low-dose conditioning regimen incorporating blinatumomab for Allo-HSCT in three ALL patients with positive MRD. Following the administration of the blinatumomab-containing conditioning regimen, all patients attained complete remission (CR) with negative MRD status, and no severe adverse events were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!