Incorporation of a ternary organic component is an effective strategy to enhance the performance of bulk heterojunction (BHJ) organic solar cells (OSCs). In this study, a small molecule luminescent dye, C545T, was first doped into blends of PTB7-Th/PC71BM and PTB7/PC71BM as a third component to fabricate ternary OSCs. It is demonstrated that C545T can disrupt the severe vertical distribution in the binary blend and effectively modulate the novel surface chemical configuration by improving the self-assembly process of the polymer donor, as a result of the good miscibility among the active layer materials and the π-π interactions between PC71BM and C545T. The obtained homogeneously bicontinuous BHJ with numerous interpenetrating nanofibers optimizes the domain size of exciton diffusion and the length of charge transfer. The energy transfer between C545T and polymers changes the transmission path of photo-generated excitons, which together improve the exciton dissociation process and reduce the recombination loss. Champion power conversion efficiencies (PCEs) of 10.69% and 9.42% were achieved by the ternary blends of PTB7-Th/C545T/PC71BM and PTB7/C545T/PC71BM, respectively, which correspond to a nearly 20% enhancement over their binary counterparts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr04335cDOI Listing

Publication Analysis

Top Keywords

ternary organic
8
organic solar
8
solar cells
8
luminescent dye
8
ternary
4
cells phase-modulated
4
phase-modulated surface
4
surface distribution
4
distribution addition
4
addition small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!