We have designed and synthesized eight isostructural 1D coordination polymers (CPs) with the general formula {[Ln(aapc)3(DMF)]}n [where Ln(iii) = Y (2), La (3), Nd (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9); and aapc = 3-((anthraquinone-1-yl)amino)propanoate]. These CPs consist of Ln-carboxylate infinite rods in which the bulky anthraquinone scaffolds arise from it in such a way that the resulting supramolecular packing exhibits isolated 1D chains. Solution structures have been corroborated through NMR methods including PGSE and EXSY NMR studies and, due to the presence of lanthanide ions, magnetic and luminescence properties have been studied. Alternating current magnetic measurements of compound 8 show slow relaxation of the magnetization, a characteristic of single molecule magnets (SMMs). The evaluation of solid-state photophysical properties reveals that the aapc scaffold sensitizes lanthanide(iii) based emission of compounds 4-9 both in the visible and near-infrared (NIR) regions at 10 K.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt02592dDOI Listing

Publication Analysis

Top Keywords

slow relaxation
8
relaxation magnetization
8
design synthesis
4
synthesis family
4
family 1d-lanthanide-coordination
4
1d-lanthanide-coordination polymers
4
polymers showing
4
showing luminescence
4
luminescence slow
4
magnetization designed
4

Similar Publications

A systematic review of the comparative effects of sound and music interventions for intensive care unit patients' outcomes.

Aust Crit Care

December 2024

Department of Music, Canadian Centre for Ethnomusicology (CCE), Department of Performing Arts, Faculty of Communication and Media Studies, University for Development Studies, Ghana; Department of Music, Faculty of Arts, University of Alberta, 3-98 Fine Arts Building, Edmonton, AB, T6G 2C9, Canada. Electronic address:

Background: Despite syntheses of evidence showing efficacy of music intervention for improving psychological and physiological outcomes in critically ill patients, interventions that include nonmusic sounds have not been addressed in reviews of evidence. It is unclear if nonmusic sounds in the intensive care unit (ICU) can confer benefits similar to those of music.

Objective: The aim of this study was to summarise and contrast available evidence on the effect of music and nonmusic sound interventions for the physiological and psychological outcomes of ICU patients based on the results of randomised controlled trials.

View Article and Find Full Text PDF

The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) is a major public health challenge, affecting millions worldwide and placing a significant burden on healthcare systems due to high hospitalization rates and limited treatment options. HFpEF is characterized by impaired cardiac relaxation, or diastolic dysfunction. However, there are no therapies that directly treat the primary feature of the disease.

View Article and Find Full Text PDF

Recent years have witnessed an intense effort to unravel magnetic field effects in electrocatalysis, as they can enhance the performance of common electrocatalysts. Both experimental and theoretical studies have shown that magnetic fields may affect, among others, the macroscopic spin-orbital ordering, charge transport, bubble release, and electron transfer kinetics. This paper highlights Electrochemical Impedance Spectroscopy (EIS) as a tool to analyze and separate the effects of magnetic field on both the oxygen reduction and evolution reactions at cobalt iron oxide electrodes.

View Article and Find Full Text PDF

Single-molecule magnets (SMMs) with slow relaxation of magnetization and blocking temperatures above that of liquid nitrogen are essential for practical applications in high-density data storage devices and quantum computers. A rapid and accurate prediction of the effective magnetic relaxation barrier () is needed to accelerate the discovery of high-performance SMMs. Using density functional theory and multireference calculations, we explored correlations between , partial atomic charges, and the anisotropic barrier for a series of sandwich-type lanthanide complexes containing cyclooctatetraene, substituted cyclopentadiene, phospholyl, boratabenzene, or borane ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!