The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) enables one to study effective connectivity and activation order in neuronal networks. To characterize effective connectivity originating from the primary motor cortex (M1), dorsal premotor area (PMd), and supplementary motor area (SMA). Three right-handed volunteers (two men, aged 25-30 years) participated in a navigated TMS-EEG experiment. M1, PMd, and SMA over the nondominant hemisphere were stimulated with 150 TMS pulses. Minimum-norm estimates were derived from the EEG data to estimate the spatial spreading of TMS-elicited neuronal activation on an individual level. The activation order of the cortical areas varied depending on the stimulated area. There were similarities and differences in the spatial distribution of the TMS-evoked potentials between subjects. Similarities in cortical activation patterns were seen at short poststimulus latencies and the differences at long latencies. This pilot study suggests that cortical activation patterns and the activation order of motor areas differ interindividually and depend on the stimulated motor area. It further indicates that TMS-activated effective connections or underlying structural connections vary between subjects. The spatial patterns of TMS-evoked potentials differ between subjects especially at long latencies, when probably more complex neuronal networks are active.

Download full-text PDF

Source
http://dx.doi.org/10.1089/brain.2018.0593DOI Listing

Publication Analysis

Top Keywords

activation patterns
12
activation order
12
motor areas
8
transcranial magnetic
8
effective connectivity
8
neuronal networks
8
motor area
8
tms-evoked potentials
8
cortical activation
8
long latencies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!