The first diastereoselective total synthesis of the bisindole alkaloid raputindole A is reported. After Au(I)-catalyzed assembly of the cyclopenta[ f]indole tricycle, it was possible to hydrogenate the indene double bond regio- and diastereoselectively through iridium catalysis, guided by a preinstalled hydroxy function. Attempted HWE reaction led to formal elimination of formaldehyde from an α-quaternary cyclopentane carbaldehyde, which was circumvented by Takai olefination. After Suzuki-Miyaura cross coupling and deprotection/oxidation, (±)-raputindole A was obtained in 13 linear steps in 18% overall yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.8b02349 | DOI Listing |
Nat Commun
December 2024
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs.
View Article and Find Full Text PDFChemMedChem
December 2024
Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
An efficient and concise synthesis of highly functionalized bridged coumarins has been developed through a diastereoselective double Michael addition reaction of p-quinols with various 4-hydroxy coumarins under catalyst-free conditions in HO-DMSO (8 : 2). The method has been applied to oxindoles for the synthesis of a variety of bridged-oxindoles and bridged-spiroxindoles in presence of a DABCO base using HO-EtOH (8 : 2) as solvent medium. The strategy is simple, highly atom economical as there is no by-product and environmentally benign (E-factor=0.
View Article and Find Full Text PDFOrg Lett
December 2024
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India.
We envisioned a novel asymmetric strategy to access unsymmetrically substituted dimeric 2-oxindoles [(,)- and (,)-] for the total synthesis of calycanthidine (). The key to success is the development of efficient Pd(0)-catalyzed asymmetric sequential allylations [via a highly enantioselective [up to 94% enantiomeric excess (ee)] and diastereoselective (up to ∼13:1) process] of unsymmetrically protected dimeric 2-oxindoles at the 3,3' position [such as (,)- and (,)-]. Gratifyingly, a mixture of bis-ester (±)-, ester-carbonates (±)- and (±)-, and bis-carbonate could afford (,)- and (,)- in highly stereoselective fashion, thereby culminating in the total synthesis of (+)-calycanthidine [-()] and (-)-calycanthidine ().
View Article and Find Full Text PDFJ Org Chem
December 2024
College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea.
The concise and efficient total synthesis of (±)-tetraponerine-2 () and (±)-tetraponerine-4 () was achieved in 9% and 14% overall yield, respectively. The key step included the diastereoselective gold(I)-catalyzed intramolecular dehydrative amination of an allylic alcohol-tethered sulfamide to produce the 1,3-diamine moiety. The resulting olefinic side chain was then elaborated by cross-metathesis and cyclized to a five-membered pyrrolidine or a six-membered piperidine ring by intramolecular Mitsunobu -alkylation.
View Article and Find Full Text PDFJACS Au
November 2024
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
(-)-Bipolarolide D is an ophiobolin-derived sesteterpenoid with a unique tetraquinane (5/5/5/5) tetracyclic skeleton decorated with a diverse set of functionalities. Herein we report a robust, scalable, and efficient total synthesis of this natural product in 1.8% overall yield.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!