Lafora disease (LD), the most devastating adolescence-onset epilepsy, is caused by mutations in the EPM2A or EPM2B genes, which encode the proteins laforin and malin, respectively. Loss of function of one of these proteins, which are involved in the regulation of glycogen synthesis, induces the accumulation of polyglucosan bodies (PGBs)-known as Lafora bodies (LBs) and associated with neurons-in the brain. Ageing and some neurodegenerative conditions lead to the appearance of another type of PGB called corpora amylacea, which are associated with astrocytes and contain neo-epitopes that can be recognized by natural antibodies. Here we studied the PGBs in the cerebral cortex and hippocampus of malin knockout mice, a mouse model of LD. These animals presented not only LBs associated with neurons but also a significant number of PGBs associated with astrocytes. These astrocytic PGBs were also increased in mice from senescence-accelerated mouse-prone 8 (SAMP8) strain and mice with overexpression of Protein Targeting to Glycogen (PTG ), indicating that they are not exclusive of LD. The astrocytic PGBs, but not neuronal LBs, contained neo-epitopes that are recognized by natural antibodies. The astrocytic PGBs appeared predominantly in the hippocampus but were also present in some cortical brain regions, while neuronal LBs were found mainly in the brain cortex and the pyramidal layer of hippocampal regions CA2 and CA3. Our results indicate that astrocytes, contrary to current belief, are involved in the etiopathogenesis of LD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240358PMC
http://dx.doi.org/10.1002/glia.23463DOI Listing

Publication Analysis

Top Keywords

astrocytic pgbs
12
polyglucosan bodies
8
lafora disease
8
lbs associated
8
associated astrocytes
8
neo-epitopes recognized
8
recognized natural
8
natural antibodies
8
neuronal lbs
8
pgbs
5

Similar Publications

In aged humans and mice, aggregates of hypobranched glycogen molecules called polyglucosan bodies (PGBs) accumulate in hippocampal astrocytes. PGBs are known to drive cognitive decline in neurological diseases but remain largely unstudied in the context of typical brain aging. Here, we show that PGBs arise in autophagy-dysregulated astrocytes of the aged C57BL/6J mouse hippocampus.

View Article and Find Full Text PDF

Lafora disease (LD) is a neurological disorder characterized by progressive myoclonus epilepsy. The hallmark of the disease is the presence of insoluble forms of glycogen (polyglucosan bodies, or PGBs) in the brain. The accumulation of PGBs is causative of the pathophysiological features of LD.

View Article and Find Full Text PDF

Lafora disease (LD), the most devastating adolescence-onset epilepsy, is caused by mutations in the EPM2A or EPM2B genes, which encode the proteins laforin and malin, respectively. Loss of function of one of these proteins, which are involved in the regulation of glycogen synthesis, induces the accumulation of polyglucosan bodies (PGBs)-known as Lafora bodies (LBs) and associated with neurons-in the brain. Ageing and some neurodegenerative conditions lead to the appearance of another type of PGB called corpora amylacea, which are associated with astrocytes and contain neo-epitopes that can be recognized by natural antibodies.

View Article and Find Full Text PDF

Background: IDH1/2 mutation, 1p/19q-codeletion and MGMT hypermethylation are well known molecular markers for gliomas. ATRX and p53 alterations are two lineage-specific genetic aberrations in diffuse astrocytic tumors. The aim of the present study is to clarify the significance of ATRX loss and its correlation with p53 overexpression, IDH1/2 mutations, 1p/19q-codeletion and MGMT hypermethylation in supertentorial astrocytoma, and to determine the prognostic value of these factors in Chinese patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!