Inhibin B (INHBB), a heterodimer of a common α-subunit and a βB-subunit, is a glycoprotein belonging to the transforming growth factor-β (TGF-β) family. In this study, we observed INHBB expression was reduced in nasopharyngeal carcinoma (NPC) tissues compared to non-tumor nasopharyngeal epithelium tissues, and INHBB was associated with lymph node metastasis, stage of disease, and clinical progress. Positive expression of INHBB in NPC predicted a better prognosis (overall survival, P = 0.038). However, the molecular mechanisms of INHBB have not been addressed in NPC. We induced anoikis-resistant cells in NPC cell lines under anchorage-independent conditions, then found epithelial-mesenchymal transition markers changed, cell apoptosis decreased, cell cycle was modified, and invasion strengthened in anoikis-resistant NPC cells. These anoikis-resistant NPC cells showed decreased expression of INHBB compared with adhesion cells. Furthermore, INHBB was found to influence the above-mentioned changes. In the anoikis-resistant NPC cells with INHBB overexpression, apoptotic cells increased, S phase cells weakened, vimentin, matrix metallopeptidase-9, and vascular endothelial growth factor A expression were downregulated, and E-cadherin expression was upregulated, and vice versa in knockdown of INHBB (INHBB shRNA) anoikis-resistant NPC cells. Diminished INHBB expression could activate the TGF-β pathway to phosphorylate Smad2/3 and form complexes in the nucleus, which resulted in the above changes. Thus, our results revealed for the first time that INHBB could suppress anoikis resistance and migration of NPC cells by the TGF-β signaling pathway, decrease p53 overexpression, and could serve as a potential biomarker for NPC metastasis and prognosis as well as a therapeutic application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215878PMC
http://dx.doi.org/10.1111/cas.13780DOI Listing

Publication Analysis

Top Keywords

npc cells
16
inhbb
12
anoikis-resistant npc
12
npc
9
anoikis resistance
8
resistance migration
8
transforming growth
8
growth factor-β
8
signaling pathway
8
nasopharyngeal carcinoma
8

Similar Publications

Nasopharyngeal carcinoma (NPC) is a malignancy arising from the epithelium of the nasopharynx. Given its late diagnosis, NPC raises serious considerations in Southeast Asia. In addition to resistance to conventional treatment that combines chemotherapy and radiation, NPC has high rates of metastasis and frequent recurrence.

View Article and Find Full Text PDF

Approximately 80% of nasopharyngeal carcinoma (NPC) patients exhibit EGFR overexpression. The overexpression of EGFR has been linked to its potential role in modulating major histocompatibility complex class I (MHC-I) molecules. We discovered that EGFR, operating in a kinase-independent manner, played a role in stabilizing the expression of SLC7A11, which subsequently inhibited MHC-I antigen presentation.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a common contributor for low back pain, which is featured by loss of extracellular matrix and nucleus pulposus cells (NPCs). Hence, our current study is undertaken to explore the potential mechanism of NPC apoptosis during IVDD. Transcription factor Dp-1 (TFDP1) expression in degenerative and non-degenerative intervertebral disc tissues was analyzed by bioinformatics.

View Article and Find Full Text PDF

Background: Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.

View Article and Find Full Text PDF

Genetic and clinical spectrum of steroid-resistant nephrotic syndrome with nuclear pore gene mutation.

Pediatr Nephrol

January 2025

Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.

Background: Steroid-resistant nephrotic syndrome (SRNS) is insensitive to steroid therapy and overwhelmingly progresses to kidney failure (KF), the known pathogenic genes of which include key subunits of the nuclear pore complex (NPC), a less-recognized contributor to glomerular podocyte injury.

Methods: After analyzing their clinical characterizations and obtaining parental consent, whole-exome sequencing (WES) was performed on patients with SRNS. Several nucleoporin (NUP) biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing from white cells of peripheral blood, minigene assay, immunohistochemical (IHC) staining, and electron microscopy (EM) ultrastructure observation of kidney biopsy, as well as multiple in silico prediction tools, including 3D protein modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!