A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System. | LitMetric

Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System.

Methods Mol Biol

Department of Animal Physiology and Molecular Biomedicine, Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany.

Published: May 2019

Electroporation is an efficient method of transferring charged macromolecules into living cells in order to study their morphology, function, and connectivity within neuronal networks. Labeling cells with fluorophore-coupled macromolecules can be used to trace projections of whole neuronal ensembles, as well as the fine morphology of single cells. Here, we present a protocol to visualize pre- and postsynaptic components of a sensory relay synapse in the brain, using the olfactory system of Xenopus laevis tadpoles as a model. We apply bulk electroporation to trace projections of receptor neurons from the nose to the brain, and single cell electroporation to visualize the morphology of their synaptic target cells, the mitral-tufted cells. Labeling the receptor neurons with a calcium-sensitive dye allows us to record stimulus-induced presynaptic input to the dendrites of the postsynaptic cells via functional calcium imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-8784-9_15DOI Listing

Publication Analysis

Top Keywords

trace projections
8
receptor neurons
8
cells
6
dye electroporation
4
electroporation imaging
4
imaging calcium
4
calcium signaling
4
signaling xenopus
4
xenopus nervous
4
nervous system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!